Skip to main content
Log in

Equivalences between three presentations of orthogonal and symplectic Yangians

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove the equivalence of two presentations of the Yangian \(Y(\mathfrak {g})\) of a simple Lie algebra \(\mathfrak {g}\), and we also show the equivalence with a third presentation when \(\mathfrak {g}\) is either an orthogonal or a symplectic Lie algebra. As an application, we obtain an explicit correspondence between two versions of the classification theorem of finite-dimensional irreducible modules for orthogonal and symplectic Yangians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akasaka, T., Kashiwara, M.: Finite-dimensional representations of quantum affine algebras. Publ. Res. Inst. Math. Sci. 33(5), 839–867 (1997). arXiv:math/9703028

    Article  MATH  MathSciNet  Google Scholar 

  2. Arnaudon, D., Avan, J., Crampé, N., Frappat, L., Ragoucy, E.: \(R\)-matrix presentation for super-Yangians \(Y{\rm osp}(m|2n))\). J. Math. Phys. 44(1), 302–308 (2003). arXiv:math/0111325

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Arnaudon, D., Molev, A., Ragoucy, E.: On the \(R\)-matrix realization of Yangians and their representations. Ann. Henri Poincaré 7(7–8), 1269–1325 (2006). arXiv:math/0511481

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Belliard, S., Regelskis, V.: Drinfeld J presentation of twisted Yangians. SIGMA 13, 011 (2017). arXiv:1401.2143

    MATH  MathSciNet  Google Scholar 

  5. Belliard, S., Crampé, N.: Coideal algebras from twisted Manin triples. J. Geom. Phys. 62(10), 2009–2023 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Bernard, D.: An Introduction to Yangian Symmetries. Int. J. Mod. Phys. B 7(20–21), 3517–3530 (1993). arXiv:hep-th/9211133

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Brundan, J., Kleshchev, A.: Parabolic presentations of the Yangian \(Y(\mathfrak{gl}_n)\). Commun. Math. Phys. 254(1), 191–220 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Chari, V., Pressley, A.: Fundamental representations of Yangians and singularities of R-matrices. J. Reine Angew. Math. 417, 87–128 (1991)

    MATH  MathSciNet  Google Scholar 

  9. Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  10. Chriss, N., Ginzburg, V.: Representation Theory and Complex Geometry. Birkhäuser, Boston (1997)

  11. Crampé, N.: Hopf structure of the Yangian \(Y(\mathfrak{sl}_n)\) in the Drinfeld realization. J. Math. Phys. 45(1), 434–447 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Damiani, I.: Drinfeld realization of affine quantum algebras: the relations. Publ. Res. Inst. Math. Sci. 48(3), 661–733 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Damiani, I.: From the Drinfeld realization to the Drinfeld-Jimbo presentation of affine quantum algebras: injectivity. Publ. Res. Inst. Math. Sci. 51(1), 131–171 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  14. Drinfel’d, V.G.: Hopf algebras and the quantum Yang–Baxter equation. Soviet Math. Dokl. 32, 254–258 (1985)

    MATH  Google Scholar 

  15. Drinfel’d, V.G.: Quantum groups. In: Gleason, A.M. (ed.) Proceedings of the International Congress of Mathematicians, Berkeley. Amer. Math. Soc., Providence, RI, pp. 798–820 (1986)

  16. Drinfel’d, V.G.: A new realization of Yangians and quantum affine algebras. Sov. Math. Doklady 36(2), 212–216 (1988)

    MATH  MathSciNet  Google Scholar 

  17. Etingof, P., Frenkel, I., Kirillov, A.: Lectures on representation theory and Knizhnik-Zamolodchikov equations. Mathematical Surveys and Monographs, vol. 58. American Mathematical Society, Providence, RI (1998)

  18. Faddeev, L.D., Reshetikhin, N.Y., Takhtajan, L.A.: Quantization of Lie Groups and Lie Algebras. Leningrad Math. J. 1(1), 193–225 (1990)

    MATH  MathSciNet  Google Scholar 

  19. Frenkel, I., Reshetikhin, N.: Quantum affine algebras and holonomic difference equations. Commun. Math. Phys. 146(1), 1–60 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Fulton, W., Harris, J.: Representation Theory-A First Course. Graduate Texts in Mathematics, Readings in Mathematics, vol. 129. Springer, New York (1991)

    Google Scholar 

  21. Gautam, S., Toledano-Laredo, V.: Yangians and quantum loop algebras. Sel. Math. New Ser. 19, 271–336 (2013). arXiv:1012.3687

    Article  MATH  MathSciNet  Google Scholar 

  22. Gautam, S., Toledano-Laredo, V.: Yangians, quantum loop algebras and abelian difference equations. J. Am. Math. Soc. 29(3), 775–824 (2016). arXiv:1310.7318

    Article  MATH  MathSciNet  Google Scholar 

  23. Gautam, S., Toledano-Laredo, V.: Meromorphic tensor equivalence for Yangians and quantum loop algebras. Publ. Math. Inst. Hautes Études Sci. 125, 267–337 (2017). arXiv:1403.5251

    Article  MATH  MathSciNet  Google Scholar 

  24. Guay, N., Nakajima, H., Wendlandt, C.: Coproduct for Yangians of affine Kac–Moody algebras. arXiv:1701.05288v3

  25. Guay, N., Regelskis, V.: Twisted Yangians for symmetric pairs of types B, C, D. Math. Z. 284(1–2), 131–166 (2016). arXiv:1407.5247

  26. Guay, N., Regelskis, V., Wendlandt, C.: Twisted Yangians of small rank. J. Math. Phys. 57(4), 041703 (2016)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Guay, N., Regelskis, V., Wendlandt, C.: Representations of Twisted Yangians of types B-C-D: I. Sel. Math. New Ser. 23(3), 2071–2156 (2017). arXiv:1605.06733

    Article  MATH  MathSciNet  Google Scholar 

  28. Guay, N., Ma, X.: From quantum loop algebras to Yangians. J. Lond. Math. Soc. (2) 86(3), 683–700 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Guay, N., Tan, Y.: Local Weyl modules and cyclicity of tensor products for Yangians. J. Algebra 432, 228–251 (2015). arXiv:1503.06510

    Article  MATH  MathSciNet  Google Scholar 

  30. Jimbo, M.: Quantum R matrix for the generalized Toda system. Commun. Math. Phys. 102(4), 537–547 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Jing, N., Liu, M.: Isomorphism between two realizations of the Yangian \(Y(\mathfrak{so}_3)\). J. Phys. A 46(7), 075201 (2013). arXiv:1301.3962

  32. Jing, N., Liu, M., Molev, A.: Isomorphism between the \(R\)-matrix and Drinfeld presentations of Yangian in types \(B\), \(C\) and \(D\). arXiv:1705.08155

  33. Kashiwara, M.: On level-zero representations of quantized affine algebras. Duke Math. J. 112(1), 117–175 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kassel, C.: Quantum Groups. Graduate Texts in Mathematics, vol. 155. Springer, New York (1995)

    Google Scholar 

  35. Kazhdan, D., Soibelman, Y.: Representations of quantum affine algebras. Sel. Math. (N.S.) 1(3), 537–595 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  36. Knapp, A.: Lie Groups Beyond an Introduction, Progress in Mathematics, vol. 140, 2nd edn. Birkhäuser, Boston (2002)

  37. Kulish, P.P., Sklyanin, E.K.: Solutions of the Yang–Baxter equation. J. Sov. Math. 19, 1596–1620 (1982)

    Article  MATH  Google Scholar 

  38. Kumar, S.: Tensor product decomposition. In: Proceedings of the International Congress of Mathematicians, vol. II. Hindustan Book Agency, New Delhi, pp. 1226–1261 (2010)

  39. Levendorskii, S.Z.: On PBW bases for Yangians. Lett. Math. Phys. 27(1), 37–42 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. Levendorskii, S.Z.: On generators and defining relations of Yangians. J. Geom. Phys. 12(1), 1–11 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  41. Loebbert, F.: Lectures on Yangian Symmetry. J. Phys. A 49(32), 323002 (2016). arXiv:1606.02947

  42. Mackay, N.J.: Introduction to Yangian symmetry in integrable field theory. Int. J. Modern Phys. A 20(30), 7189–7217 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. Molev, A.: Irreducibility criterion for tensor products of Yangian evaluation modules. Duke Math. J. 112(2), 307–341 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  44. Molev, A.: Yangians and Their Applications. Handbook of Algebra, vol. 3. Elsevier, Amsterdam (2003)

    MATH  Google Scholar 

  45. Molev, A.: Yangians and Classical Lie Algebras. Mathematical Surveys and Monographs, vol. 143. American Mathematical Society, Providence, RI (2007)

    Book  MATH  Google Scholar 

  46. Molev, A.: Feigin-Frenkel center in types \(B\), \(C\) and \(D\). Invent. Math. 191(1), 1–34 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. Molev, A., Mukhin, E.: Yangian characters and classical \(\cal{W} \)-algebras. In: Conformal Field Theory, Automorphic Forms and Related Topics, Contrib. Math. Comput. Sci., vol. 8. Springer, Heidelberg, pp. 287–334 (2014)

  48. Molev, A., Mukhin, E.: Eigenvalues of Bethe vectors in the Gaudin model. arXiv:1506.01884

  49. Nazarov, M., Tarasov, V.: On irreducibility of tensor products of Yangian modules associated with skew Young diagrams. Duke Math. J. 112(2), 343–378 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  50. Rej, A., Spill F.: The Yangian of \(\mathfrak{sl}(n|m)\) and its quantum \(R\)-matrices. J. High Energy Phys. 012 (2011). arXiv:1008.0872

  51. Tan, Y.: Braid group actions and tensor products of Yangians. arXiv:1510.01533

  52. Zamolodchikov, A.B., Zamolodchikov, A.B.: Relativistic factorized \(S\)-matrix in two dimensions having \(O(N)\) isotropic symmetry. Nucl. Phys. B 133(3), 525–535 (1978)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank V. Toledano Laredo for some helpful pointers and H. Nakajima for indicating that the results in Section A.8 of [21] can be used to prove Proposition 2.2. Additionally, we thank S. Gautam for pointing out an inaccuracy in an earlier version of the paper. The first and third named authors gratefully acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada provided via the Discovery Grant Program and the Alexander Graham Bell Canada Graduate Scholarships—Doctoral Program, respectively. Part of this work was done during the second named author’s visits to the University of Alberta; he thanks the University of Alberta for the hospitality. The second named author was supported in part by the Engineering and Physical Sciences Research Council of the UK, Grant Number EP/K031805/1; he gratefully acknowledges the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Guay.

A Proof of Theorem 2.6 when \(\mathfrak {g}=\mathfrak {s}\mathfrak {l}_2\)

A Proof of Theorem 2.6 when \(\mathfrak {g}=\mathfrak {s}\mathfrak {l}_2\)

In this appendix, we complete the proof of Theorem 2.6 in the case where \(\mathfrak {g}=\mathfrak {s}\mathfrak {l}_2\). The extra difficulty when \(\mathfrak {g}= \mathfrak {s}\mathfrak {l}_2\) is to check that \(\varPhi _{\mathrm {cr},J}\) preserves the relation \([{\tilde{h}}_{i1},[x_{i1}^+,x_{i1}^-]]=0\) of \(Y_\zeta ^\mathrm{cr}(\mathfrak {g})\).

We normalize our symmetric invariant non-degenerate bilinear form \((\cdot , \cdot )\) on \(\mathfrak {s}\mathfrak {l}_2\) so that it is given by \((X,Y)=\mathrm {Tr}(XY)\) for all \(X,Y\in \mathfrak {s}\mathfrak {l}_2\). With this choice, the single positive root \(\alpha \) has length 2 and \(\{x_{i0}^+,x_{i0}^-,h\}\) coincides with the standard basis \(\{e,f,h\}\) of \(\mathfrak {s}\mathfrak {l}_2\). We will primarily employ the latter notation throughout the remainder of this proof, but when dealing with equations involving e and f simultaneously, we will sometimes replace them with \(x^+\) and \(x^-\), respectively. An orthonormal basis with respect to \((\cdot ,\cdot )\) is \(\mathcal {B}=\{E,F,H\}\), where

$$\begin{aligned} E=\tfrac{1}{\sqrt{2}}(e+f)\quad F=\tfrac{1}{\sqrt{-2}}(e-f),\quad H=\tfrac{1}{\sqrt{2}}h. \end{aligned}$$

In particular, we have

$$\begin{aligned}{}[H,E]= & {} e-f=\sqrt{-2}F,\quad [H,F]=-\tfrac{\sqrt{-1}}{2}[h,e-f]=\tfrac{1}{i}(e+f)=-\sqrt{-2}E,\\&\quad [E,F]=\sqrt{-1} h=\sqrt{-2}H. \end{aligned}$$

Step 1: Reducing the defining relations.

We begin by showing that the relation

$$\begin{aligned}{}[[J(e),J(f)],J(h)]=\zeta ^2\left( fJ(e)-J(f)\,e\right) h \end{aligned}$$

is satisfied in \(Y_\zeta (\mathfrak {g})\). This relation is well known throughout the literature (see for instance (4.64) in [5] and Definition 2.22 in [44]), but to our knowledge the relevant computations have never appeared explicitly, so we have decided to include them.

Consider equation (2.4) with \(X_1=E=X_3\) and \(X_2=F=X_4\). Since \([J(E),J(F)]=\sqrt{-1}[J(e),J(f)]\) and \([E,J(F)]=\sqrt{-1}J(h)\), the left-hand side is equal to \(-2\left[ [J(e),J(f)],J(h)\right] \). Thus, it suffices to show that the right-hand side of (2.4) with \(X_1=E=X_3\) and \(X_2=F=X_4\) is equal to \(-2\zeta ^2\left( fJ(e)-J(f)\,e\right) h\). By definition, it is equal to

$$\begin{aligned} 2\zeta ^2 \sum _{X_\lambda ,X_\mu ,X_\nu \in \mathcal {B}}\left( [E,X_\lambda ],\big [[F,X_\mu ],[[E,F],X_\nu ] \big ]\right) \{X_\lambda ,X_\mu ,J(X_\nu )\}. \end{aligned}$$
(A.1)

As \([E,F]=\sqrt{-1}h\) and \((\cdot ,\cdot )\) is invariant and symmetric, we have

$$\begin{aligned} \left( [E,X_\lambda ],\big [[F,X_\mu ],[[E,F],X_\nu ] \big ]\right) =\sqrt{-1}\left( [h,X_\nu ],\big [[E,X_\lambda ],[F,X_\mu ] \big ] \right) . \end{aligned}$$

Thus, we can rewrite (A.1) as

$$\begin{aligned}&\sum _{X_\lambda ,X_\mu \in \mathcal {B}}\left( [h,E],\big [[E,X_\lambda ],[F,X_\mu ] \big ] \right) \{X_\lambda ,X_\mu ,J(E)\}\nonumber \\&\quad +\,\sum _{X_\lambda ,X_\mu \in \mathcal {B}}\left( [h,F],\big [[E,X_\lambda ],[F,X_\mu ] \big ] \right) \{X_\lambda ,X_\mu ,J(F)\} \end{aligned}$$
(A.2)

multiplied by \(2\sqrt{-1}\zeta ^2\). Consider the different nonzero possibilities for \(\big [[E,X_\lambda ],[F,X_\mu ] \big ]\). They are

$$\begin{aligned} \big [[E,H],[F,H]\big ],\quad \big [[E,H],[F,E]\big ]\quad \text {and}\quad \big [[E,F],[F,H]\big ]. \end{aligned}$$

Both \(([H,E],\cdot )\) and \(([H,F],\cdot )\) applied to the first of these is zero, while \(([H,E],\cdot )\) applied to [[EH], [FE]] is zero, and \(([H,F],\cdot )\) applied to [[EF], [FH]] is zero. Therefore, (A.2) reduces to

$$\begin{aligned} \left( [h,E],\left[ [E,F],[F,H] \right] \right) \{F,H,J(E)\}+\left( [h,F],\left[ [E,H],[F,E] \right] \right) \{H,E,J(F)\}. \end{aligned}$$

By invariance, \(\left( [h,F],\left[ [E,H],[F,E] \right] \right) =-\left( [h,E],\left[ [E,F],[F,H] \right] \right) \), and moreover

$$\begin{aligned} \left( [h,E],\left[ [E,F],[F,H] \right] \right)= & {} -\sqrt{2}\left( e-f,[h,e+f] \right) \\= & {} -2\sqrt{2}\left( e-f,e-f\right) = 4\sqrt{2}. \end{aligned}$$

Hence, (A.2) multiplied by \(2\sqrt{-1}\zeta ^2\), which is the right-hand side of (2.4) with \(X_1=E=X_3\) and \(X_2=F=X_4\), is equal to \(8i\sqrt{2}\zeta ^2\left( \{F,H,J(E)\}-\{H,E,J(F)\}\right) \). Let us rewrite this in terms of ef and h:

$$\begin{aligned}&8i\sqrt{2}\zeta ^2\left( \{F,H,J(E)\}-\{H,E,J(F)\}\right) \\&\quad = 4\zeta ^2\left( \{e-f,h,J(e+f)\}-\{h,e+f,J(e-f)\}\right) \\&\quad = 8\zeta ^2\left( \{e,h,J(f)\}-\{h,f,J(e)\}\right) . \end{aligned}$$

Expanding \(\{h,f,J(e)\}-\{e,h,J(f)\}\) and using the defining relations of \(\mathfrak {s}\mathfrak {l}_2\) to rewrite it only in terms of \(fJ(e)\,h\) and \(J(f)\,eh\), we find that it is equal to \(\frac{1}{4}\big (J(f)\,eh-fJ(e)\,h\big )\), which gives the desired result.

Step 2: Checking the relation \(\big [\tilde{h}_1,[x_1^-,x_1^+]\big ]=0\) is preserved.

By definition of \(\varPhi _{\mathrm {cr},J}\), this amounts to checking that

$$\begin{aligned}{}[J(h)-\zeta v,[J(f)-\zeta w^-,J(e)-\zeta w^+]]=0, \end{aligned}$$

where

$$\begin{aligned} v=\tfrac{1}{2}(\{e,f\}-h^2),\quad w^+=-\tfrac{1}{4}\{e,h\},\quad w^-=-\tfrac{1}{4}\{f,h\}. \end{aligned}$$

Expanding the left-hand side, we obtain

$$\begin{aligned} \begin{aligned} \left[ J(h),[J(f),J(e)]\right] -\zeta \left[ J(h),[J(f),w^+]+[w^-,J(e)]\right] +\zeta ^2\left[ J(h),[w^-,w^+]\right] \\ -\zeta \left[ v,[J(f),J(e)]\right] +\zeta ^2\left[ v,[J(f),w^+]+[w^-,J(e)]\right] -\zeta ^3 \left[ v,[w^-,w^+]\right] \end{aligned}\nonumber \\ \end{aligned}$$
(A.3)

Step 2.1: \(-\zeta ^3 \left[ v,[w^-,w^+]\right] =0\).

We have

$$\begin{aligned}{}[w^+,w^-]= & {} \tfrac{1}{16}([eh,fh]+[eh,hf]+[he,fh]+[he,hf])\nonumber \\= & {} \tfrac{1}{16}(4h^3-2\{e,f\}h-2e\{f,h\}-2\{f,h\}e-2h\{e,f\}). \end{aligned}$$
(A.4)

Now, since \([v,h]=0\) and \([\{e,f\},h]=0\), we have that \([v,\{e,f\}h+h\{e,f\}]=0\). Hence,

$$\begin{aligned}{}[v,[w^+,w^-]]=-\tfrac{1}{8}\,[v,2e\{f,h\}+2\{f,h\}e]=-\tfrac{1}{16}\,[\{e,f\}-h^2,e\{f,h\}+\{f,h\}e]. \end{aligned}$$

Using the commutator relations of \(\mathfrak {s}\mathfrak {l}_2\), we can write \(e\{f,h\}+\{f,h\}e=4efh-2h-2h^2\). Note that \([h,efh]=0\). Thus,

$$\begin{aligned}{}[v,[w^+,w^-]]=-\tfrac{1}{4}[\{e,f\},efh]=\tfrac{1}{4}([ef,efh]+[fe,efh])=\tfrac{1}{4}([fe,ef]h)=0. \end{aligned}$$

Step 2.2: The terms in (A.3) involving \(\zeta ^2\).

After rewriting \(\left[ J(h),[J(f),J(e)]\right] =\zeta ^2(fJ(e)-J(f)e)h\), the sum of the terms involving \(\zeta ^2\) in (A.3) is

$$\begin{aligned} \zeta ^2\left( (fJ(e)-J(f)e)h+\left[ J(h),[w^-,w^+]\right] +\left[ v,[J(f),w^+]+[w^-,J(e)]\right] \right) \nonumber \\ \end{aligned}$$
(A.5)

Consider first \(\left[ J(h),[w^-,w^+]\right] \). Recall that (A.4) and \(\{e,f\}=2v+h^2\). Hence, since J(h) commutes with h and v, we have

$$\begin{aligned} \left[ J(h),[w^-,w^+]\right] = {}&\tfrac{1}{8}\left( [J(h),2vh+2hv]+[J(h),\{e,\{f,h\}\}]\right) \\ = {}&\tfrac{1}{8}\left( 4[J(h),v]h+[J(h),\{e,\{f,h\}\}]\right) . \end{aligned}$$

Observe that \(e\{f,h\}+\{f,h\}e=4efh-2h-2h^2\) and \([J(h),\{e,\{f,h\}\}]=8(J(e)fh-eJ(f)h)\). Therefore, we have

$$\begin{aligned} \left[ J(h),[w^-,w^+]\right] =\tfrac{1}{2}\left( [J(h),v]h+2(J(e)fh-eJ(f)h)\right) . \end{aligned}$$
(A.6)

Let us now turn to the last term in (A.5). The identity

$$\begin{aligned}{}[J(x^\pm ),w^{\mp }]=-\tfrac{1}{4}[J(x^\pm ),x^\mp h +h x^\mp ]=\mp \tfrac{1}{2}(J(h)h-x^\mp J(x^\pm )-J(x^\pm )x^\mp ) \end{aligned}$$

implies that we can expand \([J(f),w^+]+[w^-,J(e)]\) in the form

$$\begin{aligned}{}[J(f),w^+]+[w^-,J(e)] = {}&\tfrac{1}{2}\left( J(h)h-eJ(f)-J(f)e)\right. \\&\left. +(J(h)h-fJ(e)-J(e)f)\right) \\ = {}&J(h)h-\tfrac{1}{2}(\{e,J(f)\}+\{f,J(e)\}). \end{aligned}$$

Hence,

$$\begin{aligned}{}[v,[J(f),w^+]+[w^-,J(e)]]=[v,J(h)]h-\tfrac{1}{2}([v,\{e,J(f)\}+\{f,J(e)\}]). \nonumber \\ \end{aligned}$$
(A.7)

We would like to simplify the last term. Since \([h,x^\pm J(x^\mp )+J(x^\mp )x^\pm ]=0\), we can replace v by \(\tilde{v}\) (\(= \nu + \frac{1}{2} h^2 = \frac{1}{2}\{e,f\}\)). Next, the sequence of equalities

$$\begin{aligned}{}[{\tilde{v}},\{x^\pm ,J(x^\mp )\}]= {}&[{\tilde{v}}, x^\pm ]J(x^\mp )+x^\pm [{\tilde{v}},J(x^\mp )]+[{\tilde{v}},J(x^\mp )]x^\pm +J(x^\mp )[{\tilde{v}}, x^\pm ]\\ = {}&\tfrac{1}{2}\left( \mp x^\pm hJ(x^\mp )\mp hx^\pm J(x^\mp )\pm x^\pm x^\mp J(h)\pm x^\pm J(h)x^\mp \right. \\&\left. \pm x^\mp J(h)x^\pm \pm J(h)x^\mp x^\pm \mp J(x^\mp )x^\pm h\mp J(x^\mp )hx^\pm \right) \end{aligned}$$

allow us to express \(2[{\tilde{v}},\{e,J(f)\}+\{f,J(e)\}]\) as

$$\begin{aligned}&-\,e hJ(f)- he J(f)+ efJ(h)+ e J(h)f + f J(h)e + J(h)f e - J(f)e h- J(f)he \\&\quad +\, f hJ(e)+ hf J(e)- f e J(h)- f J(h)e - e J(h)f - J(h)e f + J(e)f h+ J(e)hf. \end{aligned}$$

The terms involving J(h) all cancel out, and we are left with

$$\begin{aligned} 2[{\tilde{v}},\{e,J(f)\}+\{f,J(e)\}]= & {} -e hJ(f)- he J(f)- J(f)e h- J(f)he\\&+\, f hJ(e)+ hf J(e) + J(e)f h+ J(e)hf. \end{aligned}$$

We would like to express the right-hand side in terms of fJ(e)h and J(f)eh only. Using the defining relations of \(\mathfrak {s}\mathfrak {l}_2\), we find that

$$\begin{aligned} 2\left[ \tilde{v},\{e,J(f)\}+\{f,J(e)\}\right] =4\,(fJ(e)\,h-J(f)\,eh). \end{aligned}$$

Multiplying by \(\frac{1}{4}\) and substituting the result back into (A.7), we obtain

$$\begin{aligned}{}[v,[J(f),w^+]+[w^-,J(e)]]=[v,J(h)]\,h-(fJ(e)\,h-J(f)\,eh). \end{aligned}$$

Substituting this and (A.6) back into (A.5) gives

$$\begin{aligned}&\zeta ^2 \left( (fJ(e)-J(f)e)h+\left[ J(h),[w^-,w^+]\right] \right. \\&\left. \qquad +\left[ v,[J(f),w^+]+[w^-,J(e)]\right] \right) \\&\quad =\zeta ^2\left( (fJ(e)-J(f)e)h+\tfrac{1}{2}\left( [J(h),v]h\right. \right. \\&\left. \left. \qquad +2(J(e)fh-eJ(f)h)\right) +[v,J(h)]h-(fJ(e)h-J(f)eh) \right) \\&\quad =\tfrac{\zeta ^2}{2}\left( [v,J(h)]h+2(J(e)fh-eJ(f)h)\right) . \end{aligned}$$

Since \([v,J(h)]\,h=\frac{1}{2}[ef+fe,J(h)]\,h=\left( eJ(f)-J(e)f+J(f)e-fJ(e)\right) h=2\left( eJ(f)-J(e)f\right) h\), the above expression is zero, hence (A.5) is also zero.

Step 2.2: The terms involving \(\zeta \).

In order to see that (A.3) vanishes, it remains to see that

$$\begin{aligned} \left[ J(h),[J(f),w^+]+[w^-,J(e)]\right] +\left[ v,[J(f),J(e)]\right] =0. \end{aligned}$$
(A.8)

First observe that \([h^2,[J(f),J(e)]]=0\), so we may replace v by \({\tilde{v}}\) in (A.8). We then have

$$\begin{aligned} \left[ {\tilde{v}},[J(f),J(e)]\right] =-[J(f),[J(e),\tilde{v}]]-[J(e),[{\tilde{v}},J(f)]]. \end{aligned}$$

Since \(2w^+=[{\tilde{v}}, e]\) and \(-2w^-=[{\tilde{v}},f]\), we can rewrite the left-hand side of (A.8) as

$$\begin{aligned}&-[J(f),[J(e),{\tilde{v}}]]-[J(e),[\tilde{v},J(f)]]+\tfrac{1}{2}[J(h),[J(f),[{\tilde{v}}, e]]]\nonumber \\&\quad -\tfrac{1}{2}[J(h),[[{\tilde{v}},f],J(e)]]. \end{aligned}$$
(A.9)

Consider the last two terms. Since \([J(h),[J(x^\pm ),[\tilde{v},x^\mp ]]]=[J(h),[[J(x^\pm ),{\tilde{v}}],x^\mp ]]\pm [J(h),[\tilde{v},J(h)]]\), we have

$$\begin{aligned}&[J(h),[J(f),[{\tilde{v}}, e]]]-[J(h),[[{\tilde{v}},f],J(e)]]\\&\quad =[J(h),[[J(f),{\tilde{v}}],e]]-[J(h),[[{\tilde{v}},J(e)],f]]\\&\quad =[[J(h),[J(f),{\tilde{v}}]],e]+2[[J(f),\tilde{v}],J(e)]\\&\qquad -[[J(h),[{\tilde{v}},J(e)]],f]+2[[{\tilde{v}}, J(e)],J(f)]. \end{aligned}$$

Substituting these new expression back into (A.9), we obtain that the left-hand side of (A.8) is equal to

$$\begin{aligned} \tfrac{1}{2}\left( [[J(h),[J(f),{\tilde{v}}]],e]-[[J(h),[\tilde{v},J(e)]],f] \right) . \end{aligned}$$
(A.10)

Let us show that this vanishes. Since \({\tilde{v}}=\frac{1}{2}\{e,f\}\), we have

$$\begin{aligned}{}[J(x^\pm ),\tilde{v}]=\tfrac{1}{2}[J(x^\pm ),x^+f+fx^+]=\pm \tfrac{1}{2}(x^\pm J(h)+J(h)x^\pm ). \end{aligned}$$

Thus, \([J(h),[J(f),{\tilde{v}}]]=J(f)J(h)+J(h)J(f)\) and, similarly, \([J(h),[{\tilde{v}},J(e)]]=-J(e)J(h)-J(h)J(e)\). Substituting these back into (A.10), we see that it vanishes, and hence (A.8) holds. This completes the proof that \(\varPhi _{\mathrm {cr},J}\) preserves the relation \([h_1,[x_1^-,x_1^+]]=0\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guay, N., Regelskis, V. & Wendlandt, C. Equivalences between three presentations of orthogonal and symplectic Yangians. Lett Math Phys 109, 327–379 (2019). https://doi.org/10.1007/s11005-018-1108-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-018-1108-6

Keywords

Mathematics Subject Classification

Navigation