Skip to main content
Log in

Kac determinant and singular vector of the level N representation of Ding–Iohara–Miki algebra

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we obtain the formula for the Kac determinant of the algebra arising from the level N representation of the Ding–Iohara–Miki algebra. It is also discovered that its singular vectors correspond to generalized Macdonald functions (the q-deformed version of the AFLT basis).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Note that \(h^{(i)}_n\) and \(Q_{h}^{(i)}\) correspond to the fundamental bosons \(h^{N-i+1}_n\) and \(Q_{h}^{N-i+1}\) in [8], respectively.

  2. Here the partial orderings \(\overset{**}{>}^{\mathrm {R}}\) and \(\overset{**}{>}^{\mathrm {L}}\) are defined as follows:

    $$\begin{aligned} \vec {\lambda }\overset{**}{\ge }^{\mathrm {R}} \vec {\mu }\quad \overset{\mathrm {def}}{\Leftrightarrow } \quad&|\vec {\lambda }|=|\vec {\mu }|, \quad \sum _{i=1}^k |\lambda ^{(i)}| \ge \sum _{i=1}^k |\mu ^{(i)}| \quad (\forall k) \end{aligned}$$
    (3.47)
    $$\begin{aligned}&\mathrm {or} \quad ``(|\lambda ^{(1)}|,\ldots , |\lambda ^{(N)}|)=(|\mu ^{(1)}|,\ldots , |\mu ^{(N)}|) \quad \mathrm {and } \quad \lambda ^{(i)} \ge \mu ^{(i)} \quad (\forall i)'' , \end{aligned}$$
    (3.48)
    $$\begin{aligned} \vec {\lambda }\overset{**}{\ge }^{\mathrm {L}} \vec {\mu }\quad \overset{\mathrm {def}}{\Leftrightarrow } \quad&|\vec {\lambda }|=|\vec {\mu }|, \quad \sum _{i=K}^N |\lambda ^{(i)}| \ge \sum _{i=k}^N |\mu ^{(i)}| \quad (\forall k) \end{aligned}$$
    (3.49)
    $$\begin{aligned}&\mathrm {or} \quad ``(|\lambda ^{(1)}|,\ldots , |\lambda ^{(N)}|)=(|\mu ^{(1)}|,\ldots , |\mu ^{(N)}|) \quad \mathrm {and } \quad \lambda ^{(i)} \ge \mu ^{(i)} \quad (\forall i)'' . \end{aligned}$$
    (3.50)

    Then we have \(L^{(n,-)}_{\vec {\lambda },\vec {\mu }}=0\) unless \(\vec {\lambda }\overset{**}{<}^{\mathrm {R}} \vec {\mu }\).

  3. The AFLT basis in 4D AGT conjecture can be constructed by the spherical double affine Hecke algebra with central charges (\(SH^c\) algebra). The relation between singular vectors of the \(SH^{c}\) algebra and the AFLT basis is investigated in [25].

  4. The screening currents \(S^{(i)}(z)\), the parameters \(\alpha ^{(k)}_{\vec {r},\vec {s}}\) and integers \(r_i\), \(s_i\) in this paper correspond to \(S^{N-i}_+(z)\), \(\alpha ^{N-k}_{r,s}\), \(r_{N-i}\) and \(s_{N-i}\) in [8], respectively.

References

  1. Alba, V.A., Fateev, V.A., Litvinov, A.V., Tarnopolskiy, G.M.: On combinatorial expansion of the conformal blocks arising from AGT conjecture. Lett. Math. Phys. 98, 33–64 (2011). arXiv:1012.1312 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Alday, L.F., Gaiotto, D., Tachikawa, Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91, 167–197 (2010). arXiv:0906.3219 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Awata, H., Feigin, B., Hoshino, A., Kanai, M., Shiraishi, J., Yanagida, S.: Notes on Ding–Iohara algebra and AGT conjecture. RIMS Kokyuroku 1765, 12–32 (2011). arXiv:1106.4088 [math-ph]

    Google Scholar 

  4. Awata, H., Feigin, B., Shiraishi, J.: Quantum algebraic approach to refined topological vertex. J. High Energy Phys. 03, 041 (2012). arXiv:1112.6074 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Awata, H., Fujino, H., Ohkubo, Y.: Crystallization of deformed Virasoro algebra, Ding–Iohara–Miki algebra and 5D AGT correspondence. J. Math. Phys. 58(7), 071704 (2017). arXiv:1512.08016 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Awata, H., Kanno, H., Mironov, A., Morozov, A., Morozov, A., Ohkubo, Y., Zenkevich, Y.: Toric Calabi-Yau threefolds as quantum integrable systems. \( {\cal{R}} \)-matrix and \({\cal{RTT}} \) relations. JHEP 10, 047 (2016). arXiv:1608.05351 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Awata, H., Kanno, H., Mironov, A., Morozov, A., Morozov, A., Ohkubo, Y., Zenkevich, Y.: Anomaly in RTT relation for DIM algebra and network matrix models. Nucl. Phys. B 918, 358–385 (2017). arXiv:1611.07304 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Awata, H., Kubo, H., Odake, S., Shiraishi, J.: Quantum \({\mathscr {W}}_N\) algebras and Macdonald polynomials. Commun. Math. Phys. 179, 401–416 (1996). arXiv:q-alg/9508011 [q-alg]

    Article  ADS  MATH  Google Scholar 

  9. Awata, H., Matsuo, Y., Odake, S., Shiraishi, J.: Excited states of the Calogero-Sutherland model and singular vectors of the \(W_N\) algebra. Nucl. Phys. B 449(1–2), 347–374 (1995). arXiv:hep-th/9503043 [hep-th]

    Article  ADS  MATH  Google Scholar 

  10. Awata, H., Yamada, Y.: Five-dimensional AGT conjecture and the deformed Virasoro algebra. JHEP 01, 125 (2010). arXiv:0910.4431 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Awata, H., Yamada, Y.: Five-dimensional AGT relation and the deformed beta-ensemble. Prog. Theor. Phys. 124, 227–262 (2010). arXiv:1004.5122 [hep-th]

    Article  ADS  MATH  Google Scholar 

  12. Bouwknegt, P., Pilch, K.: The deformed Virasoro algebra at roots of unity. Comm. Math. Phys. 196(2), 249–288 (1998). arXiv:q-alg/9710026

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Bouwknegt, P., Pilch, K.: On deformed W algebras and quantum affine algebras. Adv. Theor. Math. Phys. 2, 357–397 (1998). arXiv:math/9801112 [math.QA]

    Article  MathSciNet  MATH  Google Scholar 

  14. Burban, I., Schiffmann, O.: On the Hall algebra of an elliptic curve, I. Duke Math. J. 161(7), 1171–1231 (2012). arXiv:math/0505148 [math.AG]

    Article  MathSciNet  MATH  Google Scholar 

  15. Ding, J., Iohara, K.: Generalization and deformation of Drinfeld quantum affine algebras. Lett. Math. Phys. 41, 181–193 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fateev, V.A., Litvinov, A.V.: Integrable structure, W-symmetry and AGT relation. JHEP 01, 051 (2012). arXiv:1109.4042 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Feigin, B., Feigin, E., Jimbo, M., Miwa, T., Mukhin, E.: Quantum continuous \({\mathfrak{gl}}_\infty \): semiinfinite construction of representations. Kyoto J. Math. 51(2), 337–364 (2011). arXiv:1002.3100 [math.QA]

    Article  MathSciNet  MATH  Google Scholar 

  18. Feigin, B., Frenkel, E.: Quantum W algebras and elliptic algebras. Commun. Math. Phys. 178, 653–678 (1996). arXiv:q-alg/9508009 [q-alg]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Feigin, B., Hashizume, K., Hoshino, A., Shiraishi, J., Yanagida, S.: A commutative algebra on degenerate \({\mathbb{CP}}^1\) and Macdonald polynomials. J. Math. Phys. 50(9), 095215 (2009). arXiv:0904.2291 [math.CO]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Feigin, B., Hoshino, A., Shibahara, J., Shiraishi, J., Yanagida, S.: Kernel function and quantum algebra. RIMS Kokyuroku 1689, 133–152 (2010). arXiv:1002.2485 [math.QA]

    Google Scholar 

  21. Feigin, B., Jimbo, M., Miwa, T., Mukhin, E.: Quantum toroidal \({\mathfrak{gl}}_1\) and Bethe ansatz. J. Phys. A 48(24), 244001 (2015). arXiv:1502.07194 [math.QA]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Feigin, B., Jimbo, M., Miwa, T., Mukhin, E.: Finite type modules and Bethe ansatz for quantum toroidal \({\mathfrak{gl}}_1\). Comm. Math. Phys. 356(1), 285–327 (2017). arXiv:1603.02765 [math.QA]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Feigin, B.L., Tsymbaliuk, A.I.: Equivariant \(K\)-theory of Hilbert schemes via shuffle algebra. Kyoto J. Math. 51(4), 831–854 (2011). arXiv:0904.1679 [math.RT]

    Article  MathSciNet  MATH  Google Scholar 

  24. Fukuda, M., Harada, K., Matsuo, Y., Zhu, R.D.: The Maulik-Okounkov R-matrix from the Ding-Iohara-Miki algebra. PTEP 2017(9), 093A01 (2017). arXiv:1705.02941 [hep-th]

  25. Fukuda, M., Nakamura, S., Matsuo, Y., Zhu, R.D.: SH\(^{c}\) realization of minimal model CFT: triality, poset and Burge condition. JHEP 11, 168 (2015). arXiv:1509.01000 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  26. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford Classic Texts in the Physical Sciences, 2nd edn. The Clarendon Press, Oxford University Press, New York (2015)

    Google Scholar 

  27. Miki, K.: A \((q,\gamma )\) analog of the \(W_{1+\infty }\) algebra. J. Math. Phys. 48(12), 123520 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Mimachi, K., Yamada, Y.: Singular vectors of the Virasoro algebra in terms of Jack symmetric polynomials. Commun. Math. Phys. 174(2), 447–455 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Mimachi, K., Yamada, Y.: Singular vectors of virasoro algebra in terms of jack symmetric polynomials. RIMS Kokyuroku 919, 68–78 (1995)

    MathSciNet  MATH  Google Scholar 

  30. Morozov, A., Smirnov, A.: Towards the proof of AGT relations with the help of the generalized Jack polynomials. Lett. Math. Phys. 104(5), 585–612 (2014). arXiv:1307.2576 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Negut, A.: The q-AGT-W relations via shuffle algebras. Commun. Math. Phys. 358(1), 101–170 (2018). arXiv:1608.08613 [math.RT]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Shiraishi, J., Kubo, H., Awata, H., Odake, S.: A Quantum deformation of the Virasoro algebra and the Macdonald symmetric functions. Lett. Math. Phys. 38, 33–51 (1996). arXiv:q-alg/9507034 [q-alg]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Wyllard, N.: A(N-1) conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories. JHEP 11, 002 (2009). arXiv:0907.2189 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  34. Zenkevich, Y.: Generalized Macdonald polynomials, spectral duality for conformal blocks and AGT correspondence in five dimensions. JHEP 05, 131 (2015). arXiv:1412.8592 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author shows his greatest appreciation to H. Awata, M. Bershtein, B. Feigin, P. Gavrylenko, K. Hosomichi, H. Itoyama, H. Kanno, A. Marshakov, T. Matsumoto, A. Mironov, S. Moriyama, Al. Morozov, An. Morozov, H. Nagoya, A. Negut, T. Okazaki, T. Shiromizu, T. Takebe, M. Taki, S. Yanagida and Y. Zenkevich for variable discussions and comments. The author is supported in part by Canon Foundation Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Ohkubo.

Appendices

Appendix

Appendix A: Macdonald functions

In this appendix, we give the definition of the ordinary Macdonald functions [26, Chap. VI].

Let \(\Lambda \) be the ring of symmetric functions, and \(p_{\lambda } = \prod _{k\ge 1} p_{\lambda _k}\) (\(p_n =\sum _{i\ge 1} x_i^n\)) is the power sum symmetric functions. Define the inner product \(\langle -,- \rangle _{q,t}\) over \(\Lambda \) by the condition that

$$\begin{aligned} \langle p_{\lambda }, p_{\mu } \rangle _{q,t} = z_{\lambda } \prod _{k=1}^{\ell (\lambda )} \frac{1-q^{\lambda _k}}{1-t^{\lambda _k}} \delta _{\lambda , \mu }, \quad z_{\lambda } \mathbin {:=}\prod _{i \ge 1} i^{m_i} m_i !, \end{aligned}$$
(A.1)

where \(m_i=m_i (\lambda )\) is the number of entries in \(\lambda \) equal i. For a partition \(\lambda \), Macdonald functions \(P_{\lambda } \in \Lambda \) are defined to be the unique functions in \(\Lambda \) satisfying the following two conditions:

$$\begin{aligned}&\lambda \ne \mu \quad \Rightarrow \quad \langle P_{\lambda }, P_{\mu } \rangle _{q,t} = 0; \end{aligned}$$
(A.2)
$$\begin{aligned}&P_{\lambda } = m_{\lambda } + \sum _{\mu < \lambda } c_{\lambda \mu } m_{\mu }. \end{aligned}$$
(A.3)

Here \(m_{\lambda }\) is a monomial symmetric function and < is the ordinary dominance partial ordering. In this paper, the power sum symmetric functions \(p_n\) (\(n \in {\mathbb {N}}\)) are regarded as the variables of Macdonald functions. That is to say, \(P_{\lambda }= P_{\lambda }(p_n; q,t)\). Here \(P_{\lambda }(p_n; q,t)\) is an abbreviation for \(P_{\lambda }(p_1, p_2, \ldots ; q,t)\).

Appendix B: Definition of DIM algebra and level N representation

In this section, we recall the definition of the DIM algebra and the level N representation. For the notations, we follow [19]. The DIM algebra has two parameters q and t. Let g(z) be the formal series

$$\begin{aligned} g(z)\mathbin {:=}\frac{G^+(z)}{G^-(z)}, \quad G^{\pm }(z)\mathbin {:=}(1-q^{\pm 1}z)(1-t^{\mp 1}z)(1-q^{\mp 1}t^{\pm 1}z). \end{aligned}$$
(B.1)

Then this series satisfies \(g(z)=g(z^{-1})^{-1}\).

Definition B.1

Define the algebra \({\mathcal {U}}\) to be the unital associative algebra over \({\mathbb {Q}}(q,t)\) generated by the currents \(x^\pm (z)=\sum _{n\in {\mathbb {Z}}}x^\pm _n z^{-n}\), \(\psi ^\pm (z)=\sum _{\pm n\in {\mathbb {Z}}_{\ge 0}}\psi ^\pm _n z^{-n}\) and the central element \(\gamma ^{\pm 1/2}\) satisfying the defining relations

$$\begin{aligned}&\psi ^\pm (z) \psi ^\pm (w) = \psi ^\pm (w) \psi ^\pm (z), \quad \psi ^+(z)\psi ^-(w) = \dfrac{g(\gamma ^{+1} w/z)}{g(\gamma ^{-1}w/z)}\psi ^-(w)\psi ^+(z), \end{aligned}$$
(B.2)
$$\begin{aligned}&\psi ^+(z)x^\pm (w) = g(\gamma ^{\mp 1/2}w/z)^{\mp 1} x^\pm (w)\psi ^+(z), \end{aligned}$$
(B.3)
$$\begin{aligned}&\psi ^-(z)x^\pm (w) = g(\gamma ^{\mp 1/2}z/w)^{\pm 1} x^\pm (w)\psi ^-(z), \end{aligned}$$
(B.4)
$$\begin{aligned}&\,[x^+(z),x^-(w)] =\dfrac{(1-q)(1-1/t)}{1-q/t} \big ( \delta (\gamma ^{-1}z/w) \psi ^+(\gamma ^{1/2}w)\nonumber \\&\quad \quad \quad \quad \quad \quad \quad \quad \quad - \delta (\gamma z/w) \psi ^-(\gamma ^{-1/2}w) \big ), \end{aligned}$$
(B.5)
$$\begin{aligned}&G^{\mp }(z/w)x^\pm (z)x^\pm (w)=G^{\pm }(z/w)x^\pm (w)x^\pm (z) . \end{aligned}$$
(B.6)

This algebra \({\mathcal {U}}\) is an example of the family of topological Hopf algebras introduced by Ding and Iohara [15]. This family is a sort of generalization of the Drinfeld realization of the quantum affine algebras. However, Miki introduce a deformation of the \(W_{1+\infty }\) algebra in [27], which is the quotient of the algebra \({\mathcal {U}}\) by the Serre-type relation. Hence we call the algebra \({\mathcal {U}}\) the Ding-Iohara-Miki algebra (DIM algebra). Since the algebra \({\mathcal {U}}\) has a lot of background, there are a lot of other names such as quantum toroidal \({\mathfrak {g}}{\mathfrak {l}}_1\) algebra [21, 22], elliptic Hall algebra [14] and so on. This algebra has a Hopf algebra structure. The formulas for its coproduct \(\Delta \) are

$$\begin{aligned}&\Delta (\psi ^\pm (z))= \psi ^\pm (\gamma _{(2)}^{\pm 1/2}z)\otimes \psi ^\pm (\gamma _{(1)}^{\mp 1/2}z), \end{aligned}$$
(B.7)
$$\begin{aligned}&\Delta (x^+(z))= x^+(z)\otimes 1+ \psi ^-(\gamma _{(1)}^{1/2}z)\otimes x^+(\gamma _{(1)}z), \end{aligned}$$
(B.8)
$$\begin{aligned}&\Delta (x^-(z))= x^-(\gamma _{(2)}z)\otimes \psi ^+(\gamma _{(2)}^{1/2}z)+1 \otimes x^-(z), \end{aligned}$$
(B.9)

and \(\Delta (\gamma ^{\pm 1/2})=\gamma ^{\pm 1/2} \otimes \gamma ^{\pm 1/2}\), where \(\gamma _{(1)}^{\pm 1/2} \mathbin {:=}\gamma ^{\pm 1/2}\otimes 1\) and \(\gamma _{(2)}^{\pm 1/2} \mathbin {:=}1\otimes \gamma ^{\pm 1/2}\). Since we do not use the antipode and the counit in this paper, we omit them. The DIM algebra \({\mathcal {U}}\) can be represented by the Heisenberg algebra \(a_{n}\) (\(n\in {\mathbb {Z}}\)) with the relation

$$\begin{aligned} \,[a_n, a_m] = n\frac{1-q^{|n|}}{1-t^{|n|}} \delta _{n+m,0}. \end{aligned}$$
(B.10)

Fact B.2

([19, 20]) Let u be an complex parameter or indeterminate. The morphism \(\rho _u\) defined as follows is a representation of the DIM algebra:

$$\begin{aligned}&\rho _u(x^+(z))=u\, \eta (z),\quad \rho _u(x^-(z))=u^{-1} \xi (z), \end{aligned}$$
(B.11)
$$\begin{aligned}&\rho _u(\psi ^\pm (z))=\varphi ^\pm (z), \quad \rho _u(\gamma ^{\pm 1/2})=(t/q)^{\pm 1/4}, \end{aligned}$$
(B.12)

where

$$\begin{aligned}&\eta (z)\mathbin {:=}\exp \left( \sum _{n=1}^{\infty } \dfrac{1-t^{-n}}{n} z^{n} a_{-n} \right) \exp \left( -\sum _{n=1}^{\infty } \dfrac{1-t^{n} }{n} z^{-n} a_n \right) , \end{aligned}$$
(B.13)
$$\begin{aligned}&\xi (z)\mathbin {:=}\exp \left( -\sum _{n=1}^{\infty } \dfrac{1-t^{-n}}{n}(t/q)^{n/2} z^{n}a_{-n}\right) \exp \left( \sum _{n=1}^{\infty } \dfrac{1-t^{n}}{n} (t/q)^{n/2} z^{-n}a_n \right) , \end{aligned}$$
(B.14)
$$\begin{aligned}&\varphi _{+}(z)\mathbin {:=}\exp \left( -\sum _{n=1}^{\infty } \dfrac{1-t^{n}}{n} (1-t^n q^{-n})(t/q)^{-n/4} z^{-n}a_n \right) , \end{aligned}$$
(B.15)
$$\begin{aligned}&\varphi _{-}(z)\mathbin {:=}\exp \left( \sum _{n=1}^{\infty } \dfrac{1-t^{-n}}{n} (1-t^n q^{-n})(t/q)^{-n/4} z^{n}a_{-n} \right) . \end{aligned}$$
(B.16)

Not that the zero mode \(\eta _0\) of \(\eta (z)=\sum _n \eta _n z^{-n}\) can be essentially identified with the Macdonald difference operator [26, 32]. By using the coproduct of \({\mathcal {U}}\), we can consider the tensor representation of \(\rho _u\). For an N-tuple of parameters \(\vec {u}=(u_1,u_2,\ldots ,u_N)\), define the morphism \(\rho _{\vec {u}}^{(N)}\) by

$$\begin{aligned} \rho _{\vec {u}}^{(N)}\mathbin {:=}(\rho _{u_1}\otimes \rho _{u_2}\otimes \cdots \otimes \rho _{u_N}) \circ \Delta ^{(N)}, \end{aligned}$$
(B.17)

where \(\Delta ^{(N)}\) is inductively defined by \(\Delta ^{(1)}\mathbin {:=}\mathrm {id} \), \(\Delta ^{(2)}\mathbin {:=}\Delta \) and \(\Delta ^{(N)}\mathbin {:=}( \mathrm {id} \otimes \cdots \otimes \mathrm{id}\otimes \Delta )\circ \Delta ^{(N-1)}\). The representation \(\rho _{\vec {u}}^{(N)}\) is called the level N representation after the property \(\rho _{\vec {u}}^{(N)}(\gamma )=(t/q)^{\frac{N}{2}}\). \(\rho _{\vec {u}}^{(N)}\) is also called the level (N, 0) representation or the horizontal representation to distinguish another one called the level (0, N) representation or the vertical representation [4, 17, 23]. These representations can be regarded as a sort of duality through an automorphism of DIM algebra. In the representation \(\rho _{\vec {u}}^{(N)}\), we write the i-th bosons as

$$\begin{aligned} a^{(i)}_n \mathbin {:=}\underbrace{1 \otimes \cdots \otimes 1 \otimes a_n}_i \otimes 1 \otimes \cdots \otimes 1 \end{aligned}$$
(B.18)

for simplicity. The generator \(X^{(1)}(z)\) in Definition 2.2 is obtained by

$$\begin{aligned} X^{(1)}(z) = \rho ^{(N)}_{\vec {u}} (x^{+}(z)). \end{aligned}$$
(B.19)

Note that, in this paper, the parameters \(u_i\) are realized by the operators \(U_i\) and the highest weight vector in order to use screening currents.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohkubo, Y. Kac determinant and singular vector of the level N representation of Ding–Iohara–Miki algebra. Lett Math Phys 109, 33–60 (2019). https://doi.org/10.1007/s11005-018-1094-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-018-1094-8

Keywords

Mathematics Subject Classification

Navigation