Skip to main content
Log in

Stability and instability properties of rotating Bose–Einstein condensates

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the mean-field dynamics of Bose–Einstein condensates in rotating harmonic traps and establish several stability and instability properties for the corresponding solution. We particularly emphasize the difference between the situation in which the trap is symmetric with respect to the rotation axis and the one where this is not the case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aftalion, A.: Vortices in Bose-Einstein Condensates. Progress in Nonlinear Differential Equations and Their Applications, vol. 67. Springer, New York (2006)

    MATH  Google Scholar 

  2. Antonelli, P., Marahrens, D., Sparber, C.: On the Cauchy problem for nonlinear Schrödinger equations with rotation. Discrete Contin. Dyn. Syst. 32(3), 703–715 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bambusi, D., Grébert, B., Maspero, A., Robert, D.: Reducibility of the quantum harmonic oscillator in d-dimensions with polynomial time-dependent perturbation. Anal. PDE 11(3), 775–799 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bao, W., Wang, H., Markowich, P.: Ground, symmetric and central vortex states in rotating Bose–Einstein condensates. Commun. Math. Sci. 3(1), 57–88 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bialynicki-Birula, I., Sowiński, T.: Gravity-induced resonances in a rotating trap. Phys. Rev. A 71, 043610 (2005)

    Article  ADS  Google Scholar 

  6. Carles, R.: Nonlinear Schrödinger equation with time dependent potential. Commun. Math. Sci. 9(4), 937–964 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carr, L.D., Clark, C.W.: Vortices in attractive Bose–Einstein condensates in two dimensions. Phys. Rev. Lett. 97, 010403 (2006)

    Article  ADS  Google Scholar 

  8. Cazenave, T., Lions, P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85(3), 549–561 (1982)

    Article  ADS  MATH  Google Scholar 

  9. Collin, A., Lundh, E., Suominen, K.-A.: Center-of-mass rotation and vortices in an attractive Bose gas. Phys. Rev. A 71, 023613 (2005)

    Article  ADS  Google Scholar 

  10. Cooper, N.R.: Rapidly rotating atomic gases. Adv. Phys. 57, 539–616 (2008)

    Article  ADS  Google Scholar 

  11. Dalfovo, F., Stringari, S.: Bosons in anisotropic traps: ground state and vortices. Phys. Rev. A 53, 2477–2485 (1996)

    Article  ADS  Google Scholar 

  12. Fetter, A.: Rotating trapped Bose–Einstein condensates. Rev. Mod. Phys. 81, 647 (2009)

    Article  ADS  Google Scholar 

  13. Fukuizumi, R.: Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete Contin. Dyn. Syst. 7(3), 525–544 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fukuizumi, R., Ohta, M.: Stability of standing waves for nonlinear Schrödinger equations with potentials. Differ. Integral Equ. 16(1), 111–128 (2003)

    MATH  Google Scholar 

  15. Fukuizumi, R., Ohta, M.: Instability of standing waves for nonlinear Schrödinger equations with potentials. Differ. Integral Equ. 16(6), 691–706 (2003)

    MATH  Google Scholar 

  16. Garcia-Azpeitia, C., Pelinovsky, D.E.: Bifurcations of multi-vortex configurations in rotating Bose–Einstein condensates. Milan J. Math. 85(2), 331–367 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hadj Selem, F., Hajaiej, H., Markowich, P.A., Trabelsi, S.: Variational approach to the orbital stability of standing waves of the Gross–Pitaevskii equation. Milan J. Math. 84(2), 273–295 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hirose, M., Ohta, M.: Uniqueness of positive solutions to scalar field equation with harmonic potential. Funkc. Ekvac. 50, 67–100 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ignat, R., Millot, V.: The critical velocity for vortex existence in a two-dimensional rotating Bose–Einstein condensate. J. Funct. Anal. 233(1), 260–306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Le Coz, S.: Standing wave solutions in Nonlinear Schrödinger Equations. In: Analytical and Numerical Aspects of Partial Differential Equations. Walter de Gruyter, Berlin (2009)

  21. Lewin, M., Nam, P.T., Rougerie, N.: Blow-up profile of rotating 2D focusing Bose gases. In: Macroscopic Limits of Quantum Systems. Springer (2018)

  22. Lieb, E.H., Seiringer, R., Yngvason, J.: Bosons in a trap: a rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A 61, 043602 (2000)

    Article  ADS  Google Scholar 

  23. Méhats, F., Sparber, C.: Dimension reduction for rotating Bose–Einstein condensates with anisotropic confinement. Discrete Contin. Dyn. Syst. 36(9), 5097–5118 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Oh, Y.-G.: Cauchy problem and Ehrenfest’s law of nonlinear Schrödinger equations with potentials. J. Differ. Equ. 81(2), 255–274 (1989)

    Article  ADS  MATH  Google Scholar 

  25. Saito, H., Ueda, M.: Split-merge cycle, fragmented collapse, and vortex disintegration in rotating Bose–Einstein condensates with attractive interactions. Phys. Rev. A 69, 013604 (2004)

    Article  ADS  Google Scholar 

  26. Seiringer, R.: Gross–Pitaevskii theory of the rotating gas. Commun. Math. Phys. 229, 491–509 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Seiringer, R.: Ground state asymptotics of a dilute, rotating gas. J. Phys. A 36(37), 9755 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Weinstein, M.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87, 567–576 (1983)

    Article  ADS  MATH  Google Scholar 

  29. Zhang, J.: Stability of standing waves for nonlinear Schrödinger equations with unbounded potentials. Z. Angew. Math. Phys. 51(3), 498–503 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, J.: Stability of attractive Bose–Einstein condensates. J. Stat. Phys. 101, 731–746 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, J.: Sharp threshold for global existence and blowup in nonlinear Schrödinger equation with harmonic potential. Commun. Partial Differ. Equ. 30, 1429–1443 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Arbunich.

Additional information

This publication is based on work supported by the NSF through Grant Nos. DMS-1348092 and DMS-1150427. The authors want to thank Robert Seiringer and Michael Loss for inspiring discussions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arbunich, J., Nenciu, I. & Sparber, C. Stability and instability properties of rotating Bose–Einstein condensates. Lett Math Phys 109, 1415–1432 (2019). https://doi.org/10.1007/s11005-018-01149-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-018-01149-5

Keywords

Mathematics Subject Classification

Navigation