Skip to main content
Log in

The generic quantum superintegrable system on the sphere and Racah operators

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the generic quantum superintegrable system on the d-sphere with potential \(V(y)=\sum _{k=1}^{d+1}\frac{b_k}{y_k^2}\), where \(b_k\) are parameters. Appropriately normalized, the symmetry operators for the Hamiltonian define a representation of the Kohno–Drinfeld Lie algebra on the space of polynomials orthogonal with respect to the Dirichlet distribution. The Gaudin subalgebras generated by Jucys–Murphy elements are diagonalized by families of Jacobi polynomials in d variables on the simplex. We define a set of generators for the symmetry algebra, and we prove that their action on the Jacobi polynomials is represented by the multivariable Racah operators introduced in Geronimo and Iliev (Constr Approx 31(3):417–457, 2010). The constructions also yield a new Lie-theoretic interpretation of the bispectral property for Tratnik’s multivariable Racah polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguirre, L., Felder, G., Veselov, A.P.: Gaudin subalgebras and stable rational curves. Compos. Math. 147, 1463–1478 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. De Bie, H., Genest, V.X., van de Vijver, W., Vinet, L.: A higher rank Racah algebra and the \({\mathbb{Z}}_2^n\) Laplace–Dunkl operator. arXiv:1610.02638

  3. Drinfeld, V.G.: On quasitriangular quasi-Hopf algebras and on a group that is closely connected with \({\rm Gal}(\overline{\bf Q}/{\bf Q})\). Algebra i Analiz 2(4), 149–181 (1991). [English trans. in Leningrad Math. J. 2(4) 829–860 (1991)]

    MathSciNet  Google Scholar 

  4. Duistermaat, J.J., Grünbaum, F.A.: Differential equations in the spectral parameter. Commun. Math. Phys. 103, 177–240 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables, 2nd edition, Encyclopedia of Mathematics and its Applications, vol. 155. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  6. Frenkel, E.: Gaudin model and opers, infinite dimensional algebras and quantum integrable systems. Progr. Math. 237, 1–58 (2005). arXiv:math/0407524

    Article  MATH  Google Scholar 

  7. Gasper, G., Rahman, M.: Some systems of multivariable orthogonal \(q\)-Racah polynomials. Ramanujan J. 13(1–3), 389–405 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Genest, V.X., Vinet, L.: The generic superintegrable system on the \(3\)-sphere and the \(9j\) symbols of \({\mathfrak{su}}(1,1)\). SIGMA Symmetry Integr. Geom. Methods Appl. 10(108), 28 (2014)

    MATH  MathSciNet  Google Scholar 

  9. Geronimo, J., Iliev, P.: Bispectrality of multivariable Racah–Wilson polynomials. Constr. Approx. 31(3), 417–457 (2010). arXiv:0705.1469

    Article  MATH  MathSciNet  Google Scholar 

  10. Iliev, P.: A Lie-theoretic interpretation of multivariate hypergeometric polynomials. Compos. Math. 148(3), 991–1002 (2012). arXiv:1101.1683

    Article  MATH  MathSciNet  Google Scholar 

  11. Iliev, P.: Bispectral commuting difference operators for multivariable Askey–Wilson polynomials. Trans. Am. Math. Soc. 363(3), 1577–1598 (2011). arXiv:0801.4939

    Article  MATH  MathSciNet  Google Scholar 

  12. Iliev, P., Xu, Y.: Connection coefficients for classical orthogonal polynomials of several variables. Adv. Math. 310, 290–326 (2017). arXiv:1506.04682

    Article  MATH  MathSciNet  Google Scholar 

  13. Kalnins, E.G., Miller Jr., W., Post, S.: Wilson polynomials and the generic superintegrable system on the 2-sphere. J. Phys. A 40(38), 11525–11538 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Kalnins, E.G., Miller Jr., W., Post, S.: Two-variable Wilson polynomials and the generic superintegrable system on the 3-sphere. SIGMA Symmetry Integr. Geom. Methods Appl. 051, 267 (2011). arXiv:1010.3032

    MATH  MathSciNet  Google Scholar 

  15. Kalnins, E.G., Miller Jr., W., Tratnik, M.V.: Families of orthogonal and biorthogonal polynomials on the N-sphere. SIAM J. Math. Anal. 22(1), 272–294 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kohno, T.: Série de Poincaré-Koszul associée aux groupes de tresses pures. Invent. Math. 82(1), 57–75 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Miller Jr., W., Post, S., Winternitz, P.: Classical and quantum superintegrability with applications. J. Phys. A: Math. Theor. 46(42), 423001 (2013). doi:10.1088/1751-8113/46/42/423001

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Miller Jr., W., Turbiner, A.V.: (Quasi)-exact-solvability on the sphere \(S^n\). J. Math. Phys. 56(2), 023501 (2015). doi:10.1063/1.4906909

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Post, S.: Racah polynomials and recoupling schemes of \({\mathfrak{su}}(1,1)\). SIGMA Symmetry Integr. Geom. Methods Appl. 11, 057 (2015). arXiv:1504.03705

    MATH  MathSciNet  Google Scholar 

  20. Tratnik, M.V.: Some multivariable orthogonal polynomials of the Askey tableau-discrete families. J. Math. Phys. 32, 2337–2342 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Plamen Iliev.

Additional information

The author is partially supported by Simons Foundation Grant #280940.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iliev, P. The generic quantum superintegrable system on the sphere and Racah operators. Lett Math Phys 107, 2029–2045 (2017). https://doi.org/10.1007/s11005-017-0978-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-017-0978-3

Keywords

Mathematics Subject Classification

Navigation