Skip to main content
Log in

Virasoro constraints and polynomial recursion for the linear Hodge integrals

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Hodge tau-function is a generating function for the linear Hodge integrals. It is also a tau-function of the KP hierarchy. In this paper, we first present the Virasoro constraints for the Hodge tau-function in the explicit form of the Virasoro equations. The expression of our Virasoro constraints is simply a linear combination of the Virasoro operators, where the coefficients are restored from a power series for the Lambert W function. Then, using this result, we deduce a simple version of the Virasoro constraints for the linear Hodge partition function, where the coefficients are restored from the Gamma function. Finally, we establish the equivalence relation between the Virasoro constraints and polynomial recursion formula for the linear Hodge integrals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov, A.: From Hurwitz Numbers to Kontsevich-Witten tau-function: a connection by Virasoro operators. Lett. Math. Phys. 104(1), 75–87. doi:10.1007/s11005-013-0655-0

  2. Alexandrov, A.: Enumerative geometry, tau-functions and Heisenberg–Virasoro algebra. Commun. Math. Phys. 338, 195–249 (2015). arXiv:1404.3402v1 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Borot, G., Eynard, B., Mulase, M., Safnuk, B.: A matrix model for simple Hurwitz numbers, and topological recursion. J. Geom. Phys. 61(2), 522–540 (2011). arXiv:0906.1206 [math-ph]

  4. Casasa, F., Muruab, A., Nadinic, M.: Efficient computation of the Zassenhaus formula. Comput. Phys. Commun. 183(11), 2386–2391 (2012). arXiv:1204.0389v2 [math-ph]

  5. Comtet, L.: Advanced combinatorics: the art of finite and infinite expansions. Rev. Enl. ed. Dordrecht, Netherlands: Reidel, p. 267 (1974)

  6. Dijkgraaf, R., Verlinde, E., Verlinde, H.: Loop equations and Virasoro constraints in non-perturbative two-dimensional quantum gravity. Nucl. Phys. B 348, 435–456 (1991)

    Article  ADS  MATH  Google Scholar 

  7. Ekedahl, T., Lando, S., Shapiro, M., Vainshtein, A.: Hurwitz numbers and intersections on moduli spaces of curves. Invent. Math. 146, 297–327 (2001). arXiv:math/0004096

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Eynard, B., Mulase, M., Safnuk, B.: The Laplace transform of the cut-and-join equation and the Bouchard–Mariño conjecture on Hurwitz numbers. Publ. Res. Inst. Math. Sci 47, 629–670 (2011). arXiv:0907.5224v3 [math.AG]

  9. Faber, C., Pandharipande, R.: Hodge integrals and Gromov–Witten theory. Invent. Math. 139(1), 173–199 (2000). arXiv: math/9810173 [math.AG]

  10. Faber, C., Pandharipande, R.: Hodge integrals, partition matrices, and the \(\lambda _g\) conjecture. Ann. Math. (2) 157, 97124 (2003)

  11. Givental, A.: Gromov–Witten invariants and quantization of quadratic Hamiltonians. Mosc. Math. J. 1, 551–568 (2001). arXiv:math/0108100 [math.AG]

  12. Goulden, I.P., Jackson, D.M.: Transitive factorizations into transpositions and holomorphic mappings on the sphere. Proc. Am. Math. Soc. 125, 51–60 (1997)

    Article  MATH  Google Scholar 

  13. Goulden, I.P., Jackson, D.M., Vakil, R.: The Gromov–Witten potential of a point, Hurwitz numbers, and Hodge integrals. Proc. Lond. Math. Soc. (3) 83(3), 563581 (2001). arXiv:math/9910004 [math.AG]

  14. Itzykson, C., Zuber, J.B.: Combinatorics of the modular group. 2. The Kontsevich integrals. Int. J. Mod. Phys. A7, 5661–5705 (1992). arXiv:hep-th/9201001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Kazarian, M.: KP hierarchy for Hodge integrals. Adv. Math. 221, 1–21 (2009). arXiv:0809.3263 [math.AG]

  16. Kazarian, M., Zograf, P.: Virasoro constraints and topological recursion for Grothendiecks Dessin Counting. Lett. Math. Phys. 105(8), 1057–1084. arXiv:1406.5976v3 [math.CO]

  17. Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147, 1–23 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Liu, X., Wang, G.: Connecting the Kontsevich–Witten and Hodge tau-functions by the \(\widehat{GL(\infty )}\) operators. Commun. Math. Phys. 346(1), 143–190 (2016). doi:10.1007/s00220-016-2671-2. arXiv:1503.05268 [math-ph]

  19. Marsaglia, G., Marsaglia, J.C. W.: A new derivation of Stirling’s approximation to n!, The American Mathematical Monthly, Vol. 97, No. 9 (Nov., 1990), pp. 826-829, Published by: Mathematical Association of America. http://www.jstor.org/stable/2324749

  20. Mironov, A., Morozov, A.: Virasoro constraints for Kontsevich–Hurwitz partition function. J. High Energy Phys. JHEP 2009, 02 (2009). arXiv:0807.2843 [hep-th]

  21. Miwa, T., Jimbo, M., Date, E.: Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras. Cambridge Tracts in Mathematics, vol. 135. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  22. Mulase, M., Safnuk, B.: Mirzakhani’s recursion relations, Virasoro constraints and the KdV hierarchy, (2006). arXiv:math/0601194 [math.QA]

  23. Mulase, M., Zhang, N.: Polynomial recursion formula for linear Hodge integrals. Commun. Number Theory Phys. 4(2), 267–294 (2010). arXiv:0908.2267v4 [math.AG]

  24. Mumford, D.: Towards Enumerative Geometry on the Moduli Space of Curves. In: Artin, M., Tate, J. (eds.), Arithmetics and Geometry, v.2, Birkhäuser, pp. 271–328 (1983)

  25. Zhou, J.: On recursion relation for Hodge integral from the cut-and-join equations, preprint 2009

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gehao Wang.

Appendix

Appendix

1.1 A.1 String and dilaton equations

Here we give a brief argument of the string equation: for \(2g-2+n>0\), \(1\le j\le g\),

$$\begin{aligned}<\lambda _j \tau _0\prod _{i=1}^n\tau _{d_i}>=\sum _{k=1}^n<\lambda _j \tau _{d_k-1}\prod _{i\ne j}\tau _{d_i}>, \end{aligned}$$
(63)

and dilaton equation: for \(2g-2+n>0\), \(1\le j\le g\),

$$\begin{aligned}<\lambda _j \tau _1\prod _{i=1}^n\tau _{d_i}>=(2g-2+n)<\lambda _j \prod _{i=1}^n\tau _{d_i}>. \end{aligned}$$
(64)

For the case \(m=-1\) in formula (5), we have

$$\begin{aligned}&V_{-1}^{(H)}\cdot \exp (F_H(u,q))\nonumber \\&\quad =\left( L_{-2}+2uL_{-1}+u^2L_0-\frac{u^2}{24}-\sum _{j=1}^{\infty }(-u)^{j-1}j\frac{\partial }{\partial q_j}\right) \cdot \exp (F_H(u,q))=0.\nonumber \\ \end{aligned}$$
(65)

Observe that, for the polynomial \(\phi _k(z)\), we have

$$\begin{aligned} \phi _k(-1) = {\left\{ \begin{array}{ll} -1 &{} k=0 \\ 0 &{} k\ge 1 . \end{array}\right. } \end{aligned}$$

Then,

$$\begin{aligned} \sum _{j=1}^{\infty }(-u)^{j-1}j\frac{\partial }{\partial q_j} \widetilde{\phi _{k}}(u,q) = {\left\{ \begin{array}{ll} 1 &{} k=0 \\ 0 &{} k\ge 1 . \end{array}\right. } \end{aligned}$$

Taking into account Eq. (2), we can obtain the following equation from (65): for \(2g-2+n>0\),

$$\begin{aligned}&\sum _{\begin{array}{c} 1\le j\le g\\ d_i\ge 0 \end{array}}(-1)^j<\lambda _j \tau _0\prod _{i=1}^n\tau _{d_i}>u^{2j}\prod _{i=1}^n\widetilde{\phi _{d_i}}(u,q) \nonumber \\&\quad =\sum _{\begin{array}{c} 1\le j\le g\\ d_i\ge 0 \end{array}}\sum _{k=1}^n(-1)^j<\lambda _j \tau _{d_k-1}\prod _{i\ne j}\tau _{d_i}>u^{2j}\prod _{i=1}^n\widetilde{\phi _{d_i}}(u,q). \end{aligned}$$

Since \(\{\widetilde{\phi _{k}}(u,q)\}\) is a linear independent set for \(k\ge 0\), the above equation immediately implies the string Eq. (63).

Next we explain how Eq. (7) gives us the dilaton equation. Let

$$\begin{aligned} c_n=\sum _{k=0}^{\infty }(-1)^k\left( {\begin{array}{c}k+2\\ k\end{array}}\right) u^{k}\frac{\partial }{\partial q_{k+3}}\cdot \widetilde{\phi _n}(u,q). \end{aligned}$$

The cases \(n=0\) and \(n=1\) are obvious. For \(n\ge 2\), we notice that

$$\begin{aligned} c_n=[z^{0}] \left\{ \frac{z^3}{(1+z)^3}\left( \phi _n(z^{-1})\right) \right\} . \end{aligned}$$

Then, from Eq. (42), we have

$$\begin{aligned} c_n= {\left\{ \begin{array}{ll} 1 &{} n=1 \\ 0 &{} n\ne 1 . \end{array}\right. } \end{aligned}$$

Hence, using Eq. (49) and the above result, we can obtain the following equation from Eq. (7): for \(2g-2+n>0\),

$$\begin{aligned}&\sum _{\begin{array}{c} 1\le j\le g\\ d_i\ge 0 \end{array}}(-1)^j<\lambda _j\tau _1\prod _{i=1}^n\tau _{d_i}>u^{2j}\prod _{i=1}^n\widetilde{\phi _{d_i}}(u,q)\\&\quad =(2g-2+n)\sum _{\begin{array}{c} 1\le j\le g\\ d_i\ge 0 \end{array}}(-1)^j<\lambda _j\prod _{i=1}^n\tau _{d_i}>u^{2j}\prod _{i=1}^n\widetilde{\phi _{d_i}}(u,q). \end{aligned}$$

This proves the dilaton equation Eq. (64).

1.2 A.2 Some technical results

We recall a method introduced in [18]. For \(k=1,2,\dots \), let

$$\begin{aligned} \mathcal {D}_{-k}=z^{1+k}\frac{\mathrm {d}}{\mathrm {d}z}-kz^k, \quad A(u)=-\sum _{k=1}^{\infty }a_ku^k\mathcal {D}_{-k}. \end{aligned}$$

Then

$$\begin{aligned} \exp (A(u))=\exp \left( -\sum a_ku^kz^{1+k}\frac{\partial }{\partial z}\right) \exp (g(uz)). \end{aligned}$$

It is easy to verify that, for \(m,n>0\), \([\mathcal {D}_{-m},\mathcal {D}_{-n}]=(n-m)\mathcal {D}_{-m-n}.\) Then there exists a unique sequence of numbers \(\{d_n\}\), such that

$$\begin{aligned} \frac{\partial }{\partial u}e^{A(u)}=\left( \sum _{n=1}^{\infty }d_nu^{n-1}\mathcal {D}_{-n}\right) e^{A(u)}. \end{aligned}$$

On the other hand, we have

$$\begin{aligned} \frac{\partial }{\partial u}e^{A(u)}= \left( \sum _{n=1}^{\infty }d_nu^{n-1}z^{1+k}\frac{\partial }{\partial z}+ \exp \left( -\sum _{k=1}^{\infty }a_ku^kz^{1+k}\frac{\partial }{\partial z}\right) \cdot \frac{\partial }{\partial u} g(uz) \right) e^{A(u)}. \end{aligned}$$

This gives us

$$\begin{aligned} \frac{\partial }{\partial u} g(uz)=\exp \left( \sum _{k=1}^{\infty }a_ku^kz^{1+k}\frac{\partial }{\partial z}\right) \cdot \left( -\sum _{n=1}^{\infty } d_nu^{n-1}nz^n\right) . \end{aligned}$$

And

$$\begin{aligned} z\frac{\mathrm {d}}{\mathrm {d}z}g(z)=\exp \left( \sum a_kz^{1+k}\frac{\mathrm {d}}{\mathrm {d}z}\right) \cdot \left( -\sum _{n=1}^{\infty }d_{n}nz^{n}\right) . \end{aligned}$$
(66)

We refer the readers to [18] for more details about the above argument.

Lemma 15

$$\begin{aligned} \phi _{n}(z) =\sum _{i=0}^n(-1)^i(2n-2i-1)!!C_i\left( f^{2n-2i+1}\right) _{+}. \end{aligned}$$

Proof

First, we know that \(z=(f)_{+}\). By induction, assume that, for \(n=k\),

$$\begin{aligned}\phi _{k}(z)=\sum _{i=1}^k(-1)^i(2k-2i-1)!!C_i(f^{2k-2i+1})_{+}.\end{aligned}$$

When \(n=k+1\), we have, by Eq. (40),

$$\begin{aligned} \phi _{k+1}(z)&= (2k+1)!!\left( f^{2k+3}\right) _{+}-\sum _{i=1}^{k+1} C_i\phi _{k+1-i}(z)\\&=(2k+1)!!\left( f^{2k+3}\right) _{+}-\sum _{n=1}^{k+1}(2k-2n+1)!!\left( f^{2k-2n+3}\right) _{+}\\&\quad \times \sum _{j=0}^{n-1}(-1)^jC_jC_{n-j}\\&=\sum _{n=0}^{k+1}(-1)^n(2k-2n+1)!!C_n\left( f^{2k-2n+3}\right) _{+}. \end{aligned}$$

This completes the proof. \(\square \)

1.3 A.3 More proof of Proposition 14

We consider the correspondence \(L_n\rightarrow l_n, M_k\rightarrow m_k, n\partial q_n\rightarrow z^n\), where

$$\begin{aligned} l_n&= -z^{1+n}\frac{\mathrm {d}}{\mathrm {d}z}-\frac{1}{2}nz^n-z^n\\ m_k&=\frac{1}{2}z^k \left( z\frac{\mathrm {d}}{\mathrm {d}z}+\frac{1}{2}\right) ^2+\frac{(k+1)}{2}z^k\left( z\frac{\mathrm {d}}{\mathrm {d}z}+\frac{1}{2}\right) + \frac{1}{12}(k+1)(k+2)z^k. \end{aligned}$$

Then

$$\begin{aligned}&\left[ \frac{1}{n}z^n,l_k\right] =z^{n+k} \quad \text{ and }\quad \left[ \frac{1}{n}z^n,m_k\right] =l_{n+k},\\&[l_m,l_n]=(m-n)l_{m+n}+\frac{m^3-m}{12}\delta _{m+n,0},\\&[l_n,m_k]=(2n-k)m_{n+k}+\frac{n^3-n}{12}z^{n+k}. \end{aligned}$$

These formulas agree with the formula presented in Sect. 4.2. Let

$$\begin{aligned} \Phi _z^{+} =\exp \left( \sum _{m=1}^{\infty }a_mz^{1+m}\frac{\mathrm {d}}{\mathrm {d}z}\right) . \end{aligned}$$

Then,

$$\begin{aligned} \exp \left( \sum _{m=1}^{\infty }a_m \left( -z^{1+m}\frac{\mathrm {d}}{\mathrm {d}z}-\frac{1}{2}mz^m-z^m\right) \right)&= e^{-\Phi _z^{+}}\frac{1}{(1+h)}=\frac{1}{1+z}e^{-\Phi _z^{+}}. \end{aligned}$$

Now, by the definition of \(m_k\), we have

$$\begin{aligned} m_{-4}=\frac{1}{2}z^{-4}\left( z\frac{\mathrm {d}}{\mathrm {d}z}\right) ^2-z^{-4}\left( z\frac{\mathrm {d}}{\mathrm {d}z}\right) -\frac{1}{8}z^{-4}. \end{aligned}$$

From Eq. (6), we can see that

$$\begin{aligned} \frac{1}{1+z}e^{-\Phi _z^{+}}m_{-4}e^{\Phi _z^{+}}(1+z)=m_0+4m_{-1}+6m_{-2}+4m_{-3}+m_{-4}+Q(z), \end{aligned}$$

where Q(z) is a polynomial. To compute Q(z), we first compute

$$\begin{aligned}&\frac{1}{1+z}\frac{1}{2}\frac{(1+z)^4}{z^4} \left( z\frac{\mathrm {d}}{\mathrm {d}z}\right) ^2 (1+z)\\&\quad = \frac{1}{2}\frac{(1+z)^4}{z^4}\left( z\frac{\mathrm {d}}{\mathrm {d}z}\right) ^2+ \frac{(1+z)^3}{z^3}\left( z\frac{\mathrm {d}}{\mathrm {d}z}\right) +\frac{(1+z)^3}{2z^3}. \end{aligned}$$

Then we have

$$\begin{aligned}&e^{-\Phi _z^{+}}m_{-4} e^{\Phi _z^{+}} =\frac{1}{2} \frac{(1+z)^4}{z^4}\left( z\frac{\mathrm {d}}{\mathrm {d}z}\right) ^2-\frac{(1+z)^3}{z^4}\left( z\frac{\mathrm {d}}{\mathrm {d}z}\right) -\frac{1}{8}\eta ^{-4}. \end{aligned}$$

Hence

$$\begin{aligned}&\frac{1}{1+z}e^{-\Phi _z^{+}}m_{-4} e^{\Phi _z^{+}}(1+z) \\&\quad =m_0+4m_{-1}+6m_{-2}+4m_{-3}+m_{-4}+\frac{1}{8}z^{-4}+\frac{1}{3}z^{-3}+\frac{1}{4}z^{-2}-\frac{1}{24}-\frac{1}{8}\eta ^{-4}. \end{aligned}$$

This shows that

$$\begin{aligned} Q(z)=\frac{1}{8}z^{-4}+\frac{1}{3}z^{-3}+\frac{1}{4}z^{-2}-\frac{1}{24}-\frac{1}{8}\eta ^{-4}. \end{aligned}$$

And therefore,

$$\begin{aligned} e^U\left( \frac{1}{8}q_4\right) e^{-U}=\frac{1}{8}\sum _{i=-4}^{\infty } [z^{i}](\eta ^{-4})u^{i+4}\alpha _{i}. \end{aligned}$$

Remark

It is definitely possible to prove Proposition 14 directly using the operators \(l_n\) and \(m_k\). But we think the use of power series like (66) and (6) simplifies a lot of computations, while the direct computation still needs to take care of the nested commutators of differential operators involving \(l_n\) and \(m_k\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Wang, G. Virasoro constraints and polynomial recursion for the linear Hodge integrals. Lett Math Phys 107, 757–791 (2017). https://doi.org/10.1007/s11005-016-0923-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-016-0923-x

Keywords

Mathematics Subject Classification

Navigation