Skip to main content
Log in

Quantum Q systems: from cluster algebras to quantum current algebras

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper gives a new algebraic interpretation for the algebra generated by the quantum cluster variables of the \(A_r\) quantum Q-system (Di Francesco and Kedem in Int Math Res Not IMRN 10:2593–2642, 2014). We show that the algebra can be described as a quotient of the localization of the quantum algebra \(U_{\sqrt{q}}({\mathfrak {n}}[u,u^{-1}])\subset U_{\sqrt{q}}(\widehat{{\mathfrak {sl}}}_2)\), in the Drinfeld presentation. The generating current is made up of a subset of the cluster variables which satisfy the Q-system, which we call fundamental. The other cluster variables are given by a quantum determinant-type formula, and are polynomials in the fundamental generators. The conserved quantities of the discrete evolution (Di Francesco and Kedem in Adv Math 228(1):97–152, 2011) described by quantum Q-system generate the Cartan currents at level 0, in a non-standard polarization. The rest of the quantum affine algebra is also described in terms of cluster variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. Throughout this paper, we shall refer to equation (2.1) as the “M-system” relation, in analogy with the Q-system relation (see below for a precise connection).

  2. In cluster algebras, all inverses of the generators are adjoined by definition, hence the localization.

  3. To be precise, to compare with the usual definition of [9], the generators are renormalized cluster variables.

  4. This is a delta function in the sense that \(\oint \frac{du}{2i\pi u} f(u)\delta (u/z)=f(z)\), where the contour integral picks out the constant term of the current \(f(u)\delta (u/z)\).

  5. After acceptance of the paper we became aware of an earlier work by Miki [20] who introduces difference operators similar to the \({\alpha }=1\) version of \({\mathcal M}_{{\alpha },n}^{q,t}\).

References

  1. Di Francesco, P., Kedem, R.: Non-commutative integrability, paths and quasi-determinants. Adv. Math. 228(1), 97–152 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Di Francesco, P., Kedem, R.: Quantum cluster algebras and fusion products. Int. Math. Res. Not. IMRN 10, 2593–2642 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Di Francesco, P., Kedem, R.: Difference equations for graded characters from quantum cluster algebra (2015). arXiv:1505.01657 [math.RT]

  4. Feigin, B., Loktev, S.: On generalized Kostka polynomials and the quantum Verlinde rule. In: Differential topology, infinite-dimensional Lie algebras, and applications, vol. 194 of American Mathematical Society Translations Series 2, pp. 61–79. American Mathematical Society, Providence, RI (1999)

  5. Di Francesco, P., Kedem, R.: (t,q)-deformed Q-systems, DAHA and quantum toroidal algebras via generalized Macdonald operators (2016) (Work in progress)

  6. Kirillov, A.N., Noumi, M.: \(q\)-difference raising operators for Macdonald polynomials and the integrality of transition coefficients. In: Algebraic methods and \(q\)-special functions (Montréal, QC, 1996), vol. 22 of CRM Proc. Lecture Notes, pp. 227–243. American Mathematical Society, Providence, RI (1999)

  7. Feigin, B., Jimbo, M., Miwa, T., Mukhin, E.: Quantum toroidal \({\mathfrak{gl}}_1\)-algebra: plane partitions. Kyoto J. Math. 52(3), 621–659 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Drinfel’d, V.G.: Quantum groups. In: Proceedings of the international congress of mathematicians, Vol. 1, 2 (Berkeley, California, 1986), pp. 798–820. American Mathematical Society, Providence (1987)

  9. Berenstein, A., Zelevinsky, A.: Quantum cluster algebras. Adv. Math. 195(2), 405–455 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kedem, R.: \(Q\)-systems as cluster algebras. J. Phys. A 41(19), 194011 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Kapranov, M.M.: Eisenstein series and quantum affine algebras. J. Math. Sci. (New York) 84(5), 1311–1360 (1997). (Algebraic geometry, 7)

    Article  MathSciNet  MATH  Google Scholar 

  12. Di Francesco, P., Kedem, R.: \(Q\)-systems, heaps, paths and cluster positivity. Commun. Math. Phys. 293(3), 727–802 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Frenkel, E., Reshetikhin, N.: Quantum affine algebras and deformations of the Virasoro and W-algebras. Commun. Math. Phys. 178(1), 237–264 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Gelfand, I., Retakh, V.: Quasideterminants. I. Sel. Math. (N.S.) 3(4), 517–546 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Robbins, D.P., Rumsey Jr., H.: Determinants and alternating sign matrices. Adv. Math. 62(2), 169–184 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Di Francesco, P.: An inhomogeneous lambda-determinant. Electron. J. Comb. 20(3), 34 (2013). (Paper 19)

  17. Gessel, I., Viennot, G.: Binomial determinants, paths, and hook length formulae. Adv. Math. 58(3), 300–321 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Negut, A.: The shuffle algebra revisited. Int. Math. Res. Not. IMRN 22, 6242–6275 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Macdonald, I.G., Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs, 2nd edn. The Clarendon Press, Oxford University Press, New York (1995) (With contributions by A. Oxford Science Publications, Zelevinsky)

  20. Miki, K.: A \((q,\gamma )\) analog of the \(W_{1+\infty }\) algebra. J. Math. Phys. 48, 123520 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank O. Babelon, F. Bergeron, J.-E. Bourgine, I. Cherednik, A. Negut, V. Pasquier, and O. Schiffmann for discussions at various stages of this work. R.K.’s research is supported by NSF Grant DMS-1404988. P.D.F. is supported by the NSF Grant DMS-1301636 and the Morris and Gertrude Fine endowment. R.K. would like to thank the Institut de Physique Théorique (IPhT) of Saclay, France, for hospitality during various stages of this work. The authors also acknowledge hospitality and support from Galileo Galilei Institute, Florence, Italy, as part of the scientific program on “Statistical Mechanics, Integrability and Combinatorics”, from the Centre de Recherche Mathématique de l’Université de Montreal during the thematic semester: “AdS/CFT, Holography, Integrability”, as well as of the Kavli Institute for Theoretical Physics, Santa Barbara, California, during the program “New approaches to non-equilibrium and random systems”, supported by the NSF Grant PHY11-25915.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rinat Kedem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Francesco, P., Kedem, R. Quantum Q systems: from cluster algebras to quantum current algebras. Lett Math Phys 107, 301–341 (2017). https://doi.org/10.1007/s11005-016-0902-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-016-0902-2

Keywords

Mathematics Subject Classification

Navigation