Skip to main content
Log in

A note on moments of limit log-infinitely divisible stochastic measures of Bacry and Muzy

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

A multiple integral representation of single and joint moments of the total mass of the limit log-infinitely divisible stochastic measure of Bacry and Muzy (Commun Math Phys 236:449–475, 2003) is derived. The covariance structure of the total mass of the measure is shown to be logarithmic. A generalization of the Selberg integral corresponding to single moments of the limit measure is proposed and shown to satisfy a recurrence relation. The joint moments of the limit lognormal measure, classical Selberg integral with \(\lambda _1=\lambda _2=0,\) and Morris integral are represented in the form of multiple binomial sums. For application, low moments of the limit log-Poisson measure are computed exactly and low joint moments of the limit lognormal measure are considered in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. What we call \(\mu \) is denoted \(\lambda ^2\) in [18]. Also, in [18] it is taken to be part of \(\phi (q),\) whereas we prefer to separate the two.

  2. The reader should note that other conical sets can be used to construct the measure. The other choices, however, lead to somewhat different properties of the limit measure, cf. [5] for a particular example.

  3. The nondegeneracy condition given in [4] is less stringent than Eq. (8), which is however sufficient in most cases of interest such as those of the limit lognormal, compound Poisson, etc. processes.

  4. By a slight abuse of terminology, we refer to any integral of the form \(\int _0^1 f(t)\,M_\mu (\mathrm{d}t)\) as the total mass.

  5. We first discovered these identities in the special case of the limit log-Poisson measure using the Almkvist–Zeilberger algorithm as implemented in the Maple package MultiAlmkvistZeilberger, cf. [1].

References

  1. Apagodu, M., Zeilberger, D.: Multi-variable Zeilberger and Almkvist–Zeilberger algorithms and the sharpening of Wilf–Zeilberger theory. Adv. Appl. Math. 37, 139–152 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bacry, E., Delour, J., Muzy, J.-F.: Multifractal random walk. Phys. Rev. E 64, 026103 (2001)

  3. Bacry, E., Delour, J., Muzy, J.-F.: Modelling financial time series using multifractal random walks. Physica A 299, 84–92 (2001)

  4. Bacry, E., Muzy, J.-F.: Log-infinitely divisible multifractal random walks. Commun. Math. Phys. 236, 449–475 (2003)

    Article  ADS  MATH  Google Scholar 

  5. Barral, J., Jin, X.: On exact scaling log-infinitely divisible cascades. Probab. Theory Relat. Fields 160, 521–565 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barral, J., Mandelbrot, B.B.: Multifractal products of cylindrical pulses. Probab. Theory Relat. Fields 124, 409–430 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benjamini, I., Schramm, O.: KPZ in one dimensional random geometry of multiplicative cascades. Commun. Math. Phys. 289, 653–662 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Duplantier, B., Sheffield, S.: Liouville quantum gravity and KPZ. Invent. Math. 185, 333–393 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Forrester, P.J.: Log-Gases and Random Matrices. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  10. Fyodorov, Y.V., Bouchaud, J.P.: Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential. J. Phys. A Math Theor. 41, 372001 (2008)

  11. Fyodorov, Y.V., Keating, J.P.: Freezing transitions and extreme values: random matrix theory, \(\zeta (1/2+it),\) and disordered landscapes. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372, 20120503 (2014)

    MATH  Google Scholar 

  12. Fyodorov, Y.V., Le Doussal, P., Rosso, A.: Statistical mechanics of logarithmic REM: duality, freezing and extreme value statistics of 1/f noises generated by Gaussian free fields. J. Stat. Mech. Theory Exp., P10005 (2009)

  13. Fyodorov, Y.V., Giraud, O.: High values of disorder-generated multifractals and logarithmically correlated processes. Chaos Solit. Fract. (2014). doi:10.1016/j.chaos.2014.11.018

  14. Kahane, J.-P.: Positive martingales and random measures. Chin. Ann. Math. Ser. B 8, 1–12 (1987)

    MathSciNet  MATH  Google Scholar 

  15. Károlyi, G., Nagy, Z.L., Petrov, F., Volkov, V.: A new approach to constant term identities and Selberg-type integrals. Adv. Math. 277, 252–282 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mandelbrot, B.B.: Possible refinement of the log-normal hypothesis concerning the distribution of energy dissipation in intermittent turbulence. In: Rosenblatt, M., Van Atta, C. (eds.) Statistical Models and Turbulence. Lecture Notes in Physics, vol. 12. Springer, New York, p. 333 (1972)

  17. Mandelbrot, B.B.: Limit lognormal multifractal measures. In: E. A. Gotsman, E.A. et al. (eds.) Frontiers of Physics: Landau Memorial Conference. Pergamon, New York, p. 309 (1990)

  18. Muzy, J.-F., Bacry, E.: Multifractal stationary random measures and multifractal random walks with log-infinitely divisible scaling laws. Phys. Rev. E 66, 056121 (2002)

    Article  ADS  Google Scholar 

  19. Nesterenko, Y.V.: Integral identities and constructions of approximations to zeta-values. J. Théor. Nombres de Bordeaux 15, 535–550 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ostrovsky, D.: Intermittency expansions for limit lognormal multifractals. Lett. Math. Phys. 83, 265–280 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Ostrovsky, D.: Mellin transform of the limit lognormal distribution. Commun. Math. Phys. 288, 287–310 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Ostrovsky, D.: On the limit lognormal and other limit log-infinitely divisible laws. J. Stat. Phys. 138, 890–911 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Ostrovsky, D.: On the stochastic dependence structure of the limit lognormal process. Rev. Math. Phys. 23, 127–154 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ostrovsky, D.: Selberg integral as a meromorphic function. Int. Math. Res. Not. IMRN 17, 3988–4028 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Ostrovsky, D.: On Barnes beta distributions, Selberg integral and Riemann XI. Forum Math. 28, 1–23 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ostrovsky, D.: On Barnes beta distributions and applications to the maximum distribution of the 2D Gaussian Free Field. J. Stat. Phys. 164, 1292–1317 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Rhodes, R., Vargas, V.: KPZ formula for log-infinitely divisible multifractal random measures. ESAIM Probab. Stat. 15, 358–371 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schmitt, F., Marsan, D.: Stochastic equations generating continuous multiplicative cascades. Eur. J. Phys. B 20, 3–6 (2001)

    ADS  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Jakob Ablinger of the Research Institute for Symbolic Computation for verifying Eqs. (71)–(75) and attempting to compute the integrals in Eqs. (89) and (90) using an extension of the Almkvist-Zeilberger algorithm in his Mathematica package MultiIntegrate. The author gratefully acknowledges that he used Doron Zeilberger’s implementation of the same algorithm in the Maple package MultiAlmkvistZeilberger. We verified all of our results in Sects. 4 and 5 numerically using the computer algebra program MAXIMA (http://maxima.sourceforge.net). Finally, the author is thankful to the referee for several helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Ostrovsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostrovsky, D. A note on moments of limit log-infinitely divisible stochastic measures of Bacry and Muzy. Lett Math Phys 107, 267–289 (2017). https://doi.org/10.1007/s11005-016-0898-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-016-0898-7

Keywords

Mathematics Subject Classification

Navigation