Skip to main content
Log in

O(N) Random Tensor Models

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We define in this paper a class of three-index tensor models, endowed with \({O(N)^{\otimes 3}}\) invariance (N being the size of the tensor). This allows to generate, via the usual QFT perturbative expansion, a class of Feynman tensor graphs which is strictly larger than the class of Feynman graphs of both the multi-orientable model (and hence of the colored model) and the U(N) invariant models. We first exhibit the existence of a large N expansion for such a model with general interactions. We then focus on the quartic model and we identify the leading and next-to-leading order (NLO) graphs of the large N expansion. Finally, we prove the existence of a critical regime and we compute the critical exponents, both at leading order and at NLO. This is achieved through the use of various analytic combinatorics techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gurau R.: Colored group field theory. Commun. Math. Phys. 304, 69–93 (2011) arXiv:0907.2582

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Gurau, R., Ryan, J.P.: Colored tensor models—a review. SIGMA 8:020 (2012). arXiv:1109.4812

  3. Gurau R.: The 1/N expansion of colored tensor models. Annales Henri Poincare 12, 829–847 (2011) arXiv:1011.2726

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Gurau, R.; Rivasseau, V.: The 1/N expansion of colored tensor models in arbitrary dimension. Europhys. Lett. 95, 50004 (2011). arXiv:1101.4182

  5. Gurau R.: The complete 1/N expansion of colored tensor models in arbitrary dimension. Ann. Henri Poincare 13, 399–423 (2012) arXiv:1102.5759

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bonzom V., Gurau R., Riello A., Rivasseau V.: Critical behavior of colored tensor models in the large N limit. Nucl. Phys. B 853, 174–195 (2011) arXiv:1105.3122

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Gurau R., Ryan J.P.: Melons are branched polymers. Ann. Henri Poincare 15(11), 2085–2131 (2014) arXiv:1302.4386

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Ambjørn, J., Durhuus, B., Jonsson, T.: Quantum Geometry: A Statistical Field Theory Approach. Cambridge University Press, Cambridge (1997)

  9. Bonzom, V., Gurau, R., Rivasseau, V.: Random tensor models in the large N limit: uncoloring the colored tensor models. Phys. Rev. D 85, 084037 (2012). arXiv:1202.3637

  10. Kamiski, W., Oriti, D., Ryan, J.P.: Towards a double-scaling limit for tensor models: probing sub-dominant orders. N. J. Phys. 16, 063048 (2014). arXiv:1304.6934

  11. Dartois, S., Gurau, R., Rivasseau, V.: Double scaling in tensor models with a quartic interaction. JHEP 09, 088 (2013). arXiv:1307.5281

  12. Bonzom V., Gurau R., Ryan J.P., Tanasa A.: The double scaling limit of random tensor models. JHEP 09, 051 (2014) arXiv:1404.7517

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Gurau R.: Universality for random tensors. Ann. Inst. H. Poincare Probab. Stat. 50(4), 1474–1525 (2014) arXiv:1111.0519

    Article  MathSciNet  MATH  Google Scholar 

  14. Gurau R.: The 1/N expansion of tensor models beyond perturbation theory. Commun. Math. Phys. 330, 973–1019 (2014) arXiv:1304.2666

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Delepouve, T., Gurau, R., Rivasseau, V.: Universality and Borel summability of arbitrary quartic tensor models (2014). arXiv:1403.0170.

  16. Tanasa A.: Multi-orientable group field theory. J. Phys. A 45, 165401 (2012) arXiv:1109.0694

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Tanasa A.: Tensor models, a quantum field theoretical particularization. Proc. Rom. Acad. A 13(3), 225 (2012) arXiv:1211.4444

    MathSciNet  Google Scholar 

  18. Dartois S., Rivasseau V., Tanasa A.: The 1/N expansion of multi-orientable random tensor models. Ann. Henri Poincare 15, 965–984 (2014) arXiv:1301.1535

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Raasakka M., Tanasa A.: Next-to-leading order in the large N expansion of the multi-orientable random tensor model. Ann. Henri Poincare 16(5), 1267–1281 (2015) arXiv:1310.3132

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Fusy, E., Tanasa, A.: Asymptotic expansion of the multi-orientable random tensor model (2014). arXiv:1408.5725

  21. Gurau R., Tanasa A., Youmans D.R.: The double scaling limit of the multi-orientable tensor model. Europhys. Lett. 111(2), 21002 (2015) arXiv:1505.00586

    Article  ADS  Google Scholar 

  22. Tanasa, A.: The multi-orientable random tensor model, a review (2015). arXiv:1512.02087

  23. Ben Geloun J., Rivasseau V.: A renormalizable 4-dimensional tensor field theory. Commun. Math. Phys. 318, 69–109 (2013) arXiv:1111.4997

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Ben Geloun J., Samary D.O.: 3D tensor field theory: renormalization and one-loop \({\beta}\)-functions. Ann. Henri Poincare 14, 1599–1642 (2013) arXiv:1201.0176

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Carrozza S., Oriti D., Rivasseau V.: Renormalization of tensorial group field theories: abelian U(1) models in four dimensions. Commun. Math. Phys. 327, 603–641 (2014) arXiv:1207.6734

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Samary D.O., Vignes-Tourneret F.: Just renormalizable TGFT’s on U(1)d with gauge invariance. Commun. Math. Phys. 329, 545–578 (2014) arXiv:1211.2618

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Carrozza S., Oriti D., Rivasseau V.: Renormalization of a SU(2) tensorial group field theory in three dimensions. Commun. Math. Phys. 330, 581–637 (2014) arXiv:1303.6772

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Lahoche, V., Oriti, D.: Renormalization of a tensorial field theory on the homogeneous space SU(2)/U(1) (2015). arXiv:1506.08393

  29. Carrozza S.: Discrete renormalization group for SU(2) tensorial group field theory. Ann. Inst. Henri Poincaré Comb. Phys. Interact. 03, 49–112 (2015) arXiv:1407.4615

    Article  MathSciNet  MATH  Google Scholar 

  30. Carrozza S.: Group field theory in dimension \({4-\epsilon}\). Phys. Rev. D 91(6), 065023 (2015) arXiv:1411.5385

    Article  ADS  MathSciNet  Google Scholar 

  31. Carrozza, S.: Tensorial Methods and Renormalization in Group Field Theories. Springer, Berlin (2014). arXiv:1310.3736

  32. Zinn-Justin P.: The general O(n) quartic matrix model and its application to counting tangles and links. Commun. Math. Phys. 238, 287–304 (2003) arXiv:math-ph/0106005

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Alexandrov S., Geiller M., Noui K.: Spin foams and canonical quantization. SIGMA 8, 055 (2012) arXiv:1112.1961

    MathSciNet  MATH  Google Scholar 

  34. Perez, A.: The spin foam approach to quantum gravity. Liv. Rev. Rel. 16, 3 (2013). arXiv:1205.2019

  35. Freidel L.: Group field theory: an Overview. Int. J. Theor. Phys. 44, 1769–1783 (2005) arXiv:hep-th/0505016

    Article  MathSciNet  MATH  Google Scholar 

  36. Oriti, D.: The microscopic dynamics of quantum space as a group field theory, pp 257–320 (2011). arXiv:1110.5606

  37. Vince A.: The classification of closed surfaces using colored graphs. Graphs Combin. 9(1), 75–84 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  38. Freidel L., Louapre D.: Nonperturbative summation over 3-D discrete topologies. Phys. Rev. D 68, 104004 (2003) arXiv:hep-th/0211026

    Article  ADS  MathSciNet  Google Scholar 

  39. Magnen J., Noui K., Rivasseau V., Smerlak M.: Scaling behaviour of three-dimensional group field theory. Class. Quant. Grav. 26, 185012 (2009) arXiv:0906.5477

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Ryan J.P.: Tensor models and embedded Riemann surfaces. Phys. Rev. D 85, 024010 (2012) arXiv:1104.5471

    Article  ADS  Google Scholar 

  41. Freidel L., Louapre D.: Nonperturbative summation over 3-D discrete topologies. Phys. Rev. D 68, 104004 (2003) arXiv:hep-th/0211026

    Article  ADS  MathSciNet  Google Scholar 

  42. Abdesselam A.: The Jacobian conjecture as a problem of perturbative quantum field theory. Ann. Henri Poincare 4, 199–215 (2003) arXiv:math/0208173

    MathSciNet  MATH  Google Scholar 

  43. de Goursac, A., Sportiello, A., Tanasa, A.: The Jacobian conjecture, a reduction of the degree to the quadratic case (2014). arXiv:1411.6558

  44. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Carrozza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrozza, S., Tanasa, A. O(N) Random Tensor Models. Lett Math Phys 106, 1531–1559 (2016). https://doi.org/10.1007/s11005-016-0879-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-016-0879-x

Mathematics Subject Classification

Keywords

Navigation