Skip to main content
Log in

Cohomological Invariants of a Variation of Flat Connections

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we apply the theory of Chern–Cheeger–Simons to construct canonical invariants associated to an r-simplex whose points parametrize flat connections on a smooth manifold X. These invariants lie in degrees (2pr − 1)-cohomology with \({\mathbb{C}/\mathbb{Z}}\)-coefficients, for p > r ≥ 1. This corresponds to a homomorphism on the higher homology groups of the moduli space of flat connections, and taking values in \({\mathbb{C}/\mathbb{Z}}\)-cohomology of the underlying smooth manifold X.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bär, C., Becker, C.: Differential Characters and Geometric Chains. In: Differential Characters. Lecture Notes in Math., vol. 2112, pp. 1–90. Springer, Berlin (2014)

  2. Cheeger, J., Simons, J.: Differential characters and geometric invariants, Geometry and topology (College Park, Md., 1983/84), 50–80, Lecture Notes in Math., vol. 1167. Springer, Berlin (1985)

  3. Chern, S.S., Simons, J.: Characteristic forms and geometric invariants. Ann Math Second Ser 99(1) (1974)

  4. Freed D.S.: Classical Chern–Simons theory. II. Special issue for S. S. Chern. Houston J. Math. 28(2), 293–310 (2002)

    MATH  MathSciNet  Google Scholar 

  5. Griffiths, P., Harris, J.: Principles in Algebraic Geometry, pp. xiv–813. Reprint of the 1978 original. Wiley Classics Library. Wiley, New York (1994)

  6. Hopkins M.J., Singer I.M.: Quadratic functions in geometry, topology, and M-theory. J. Differ. Geom. 70(3), 329–452 (2005)

    MATH  MathSciNet  Google Scholar 

  7. Iyer, J.N., Simpson, C.T.: Regulators of canonical extensions are torsion; the smooth divisor case. (2007). Preprint, arXiv:math.AG/07070372

  8. Karoubi M.: Théorie générale des classes caractéristiques secondaires. K Theory t. 4, 55–87 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Narasimhan, M.S., Ramanan, S.: Existence of universal connections, I, II. Am. J. Math. 83, 563–572 (1961) (85, 223–231; 1963)

  10. Noohi B.: Fundamental groups of algebraic stacks. J. Inst. Math. Jussieu 3(1), 69–103 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Reznikov, A.: All regulators of flat bundles are torsion. Ann. Math. (2) 141(2), 373–386 (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaya N. N. Iyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iyer, J.N.N. Cohomological Invariants of a Variation of Flat Connections. Lett Math Phys 106, 131–146 (2016). https://doi.org/10.1007/s11005-015-0807-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-015-0807-5

Mathematics Subject Classification

Keywords

Navigation