Skip to main content
Log in

Note on a Family of Monotone Quantum Relative Entropies

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Given a convex function \({\varphi}\) and two hermitian matrices A and B, Lewin and Sabin study in (Lett Math Phys 104:691–705, 2014) the relative entropy defined by \({\mathcal{H}(A,B)={\rm Tr} \left[ \varphi(A) - \varphi(B) - \varphi'(B)(A-B) \right]}\). Among other things, they prove that the so-defined quantity is monotone if and only if \({\varphi'}\) is operator monotone. The monotonicity is then used to properly define \({\mathcal{H}(A,B)}\) for bounded self-adjoint operators acting on an infinite-dimensional Hilbert space by a limiting procedure. More precisely, for an increasing sequence of finite-dimensional projections \({\left\lbrace P_n \right\rbrace_{n=1}^{\infty}}\) with \({P_n \to 1}\) strongly, the limit \({\lim_{n \to \infty} \mathcal{H}(P_n A P_n, P_n B P_n)}\) is shown to exist and to be independent of the sequence of projections \({\left\lbrace P_n \right\rbrace_{n=1}^{\infty}}\). The question whether this sequence converges to its "obvious" limit, namely \({{\rm Tr} \left[ \varphi(A)- \varphi(B) - \varphi'(B)(A-B) \right]}\), has been left open. We answer this question in principle affirmatively and show that \({\lim_{n \to \infty} \mathcal{H}(P_n A P_n, P_n B P_n) = {\rm Tr} \left[ \varphi(A) - \varphi(B) - \frac{{\rm d}}{{\rm d} \alpha} \varphi\left( \alpha A + (1-\alpha)B \right)\vert_{\alpha = 0} \right]}\). If the operators A and B are regular enough, that is (AB), \({\varphi(A)-\varphi(B)}\) and \({\varphi'(B)(A-B)}\) are trace-class, the identity \({{\rm Tr}\Big[ \varphi(A) - \varphi(B) - \frac{{\rm d}}{{\rm d} \alpha} \varphi\left( \alpha A + (1-\alpha)B \right)\vert_{\alpha = 0} \Big] = {\rm Tr} \Big[ \varphi(A)- \varphi(B) - \varphi'(B)(A-B) \Big]}\) holds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewin M., Sabin J.: A family of monotone quantum relative entropies. Lett. Math. Phys. 104, 691–705 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Hainzl C., Lewin M., Seiringer R.: A nonlinear model for relativistic electrons at positive temperature. Rev. Math. Phys. 20, 1283–1307 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Frank R.L., Hainzl C., Seiringer R., Solovej J.P.: Microscopic derivation of Ginzburg-Landau theory. J. Am. Math. Soc. 25(3), 667–713 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bhatia R.: Matrix analysis. Springer-Verlag, New York (1997)

    Book  Google Scholar 

  5. Reed M., Simon B.: Methods of modern mathematical physics. I. Functional analysis. Academic Press, San Diego (1980)

    MATH  Google Scholar 

  6. Reed M., Simon B.: Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. Academic Press, San Diego (1975)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Seiringer.

Additional information

\({\copyright}\)2015 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deuchert, A., Hainzl, C. & Seiringer, R. Note on a Family of Monotone Quantum Relative Entropies. Lett Math Phys 105, 1449–1466 (2015). https://doi.org/10.1007/s11005-015-0787-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-015-0787-5

Mathematics Subject Classification

Keywords

Navigation