Skip to main content

Advertisement

Log in

Energy Conservation, Counting Statistics, and Return to Equilibrium

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study a microscopic Hamiltonian model describing an N-level quantum system \({\mathcal{S}}\) coupled to an infinitely extended thermal reservoir \({\mathcal{R}}\). Initially, the system \({\mathcal{S}}\) is in an arbitrary state while the reservoir is in thermal equilibrium at inverse temperature \({\beta}\). Assuming that the coupled system \({\mathcal{S}+\mathcal{R}}\) is mixing with respect to the joint thermal equilibrium state, we study the Full Counting Statistics (FCS) of the energy transfers \({\mathcal{S} \to \mathcal{R}}\) and \({\mathcal{R} \to \mathcal{S}}\) in the process of return to equilibrium. The first FCS describes the increase of the energy of the system \({\mathcal{S}}\). It is an atomic probability measure, denoted \({\mathbb{P}_{\mathcal{S},\lambda,t}}\), concentrated on the set of energy differences \({{\rm sp}(H_{\mathcal{S}})-{\rm sp}(H_{\mathcal{S}})}\) (\({H_{\mathcal{S}}}\) is the Hamiltonian of \({\mathcal{S}}\), t is the length of the time interval during which the measurement of the energy transfer is performed, and \({\lambda}\) is the strength of the interaction between \({\mathcal{S}}\) and \({\mathcal{R}}\)). The second FCS, \({\mathbb{P}_{\mathcal{R},\lambda,t}}\), describes the decrease of the energy of the reservoir \({\mathcal{R}}\) and is typically a continuous probability measure whose support is the whole real line. We study the large time limit \({t \rightarrow \infty}\) of these two measures followed by the weak coupling limit \({\lambda \rightarrow 0}\) and prove that the limiting measures coincide. This result strengthens the first law of thermodynamics for open quantum systems. The proofs are based on modular theory of operator algebras and on a representation of \({\mathbb{P}_{\mathcal{R},\lambda,t}}\) by quantum transfer operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenstadt V.V., Malyshev V.A.: Spin interaction with an ideal Fermi gas. J. Stat. Phys. 48, 51–68 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  2. Aschbacher, W., Jakšić, V., Pautrat, Y., Pillet, C.-A.: Topics in non-equilibrium quantum statistical mechanics. In: Attal, S., Joye, A., Pillet, C.-A. (eds.) Open Quantum Systems III. Recent Developments. Lecture Notes in Mathematics, vol. 1882. Springer, Berlin (2006)

  3. Aschbacher, W., Jakšić, V., Pautrat Y., Pillet C.-A.: Transport properties of quasi-free Fermions. J. Math. Phys. 48, 032101-1-28 (2007)

  4. Bilingsley, P.: Convergence of Probability Measures. Willey, New York (1968)

  5. Bach V., Fröhlich J., Sigal I.M.: Return to equilibrium. J. Math. Phys. 41, 3985–4060 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Benoits, T., Jakšić, V., Panati, A., Pautrat, Y., Pillet, C.-A: Energy Conservation and Full Counting Statistics. arXiv:1503.07333(submitted)

  7. Benoits, T., Jakšić, V., Panati, A., Pautrat, Y., Pillet, C.-A: In preparation

  8. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics I 2nd edn. Springer, Berlin (1987)

  9. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics II 2nd edn. Springer, Berlin (1997)

  10. Botvich D.D., Malyshev V.A.: Unitary equivalence of temperature dynamics for ideal and locally perturbed Fermi-gas. Commun. Math. Phys 91, 301–312 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Callen, H.B.: Thermodynamics and an Introduction to Thermo-Statistics. Wiley, New York (1985)

  12. de Roeck W., Kupianien A.: ‘Return to equilibrium’ for weakly coupled quantum systems: a simple polymer expansion. Commun. Math. Phys. 305, 1–30 (2011)

    Article  Google Scholar 

  13. Dereziński J., Jakšić V.: Return to equilibrium for Pauli–Fierz systems. Ann. Henri Poincaré 4, 739–793 (2003)

    Article  MATH  ADS  Google Scholar 

  14. Dereziński J., Jakšić V., Pillet C.-A.: Perturbation theory of W *-dynamics, Liouvilleans and KMS-states. Rev. Math. Phys. 15, 447–489 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fröhlich J., Merkli M.: Another return of “return to equilibrium”. Commun. Math. Phys. 251, 235–262 (2004)

    Article  MATH  ADS  Google Scholar 

  16. Fröhlich J., Merkli M., Ueltschi D.: Dissipative transport: thermal contacts and tunneling junctions. Ann. Henri Poincaré 4, 897–945 (2003)

    Article  MATH  ADS  Google Scholar 

  17. Fröhlich, J., Merkli, M., Schwarz, S., Ueltschi, D.: Statistical mechanics of thermodynamic processes. In: Arafune, J., Arai, A., Kobayashi, M., Nakamura, K., Nakamura, T., Ojima, I., Sakai, N., Tonomura, A., Watanabe, K. (eds.) A Garden of Quanta. Essays in Honor of Hiroshi Ezawa. World Scientific Publishing, Singapore (2003)

  18. Jakšić, V., Ogata, Y., Pautrat, Y., Pillet, C.-A.: Entropic fluctuations in quantum statistical mechanics—an introduction. In: Fröhlich, J., Salmhofer, M., Mastropietro, V., De Roeck, W., Cugliandolo, L.F. (eds.) Quantum Theory from Small to Large Scales. Oxford University Press, Oxford (2012)

  19. Jakšić V., Ogata Y., Pillet C.-A.: The Green–Kubo formula and the Onsager reciprocity relations in quantum statistical mechanics. Commun. Math. Phys. 265, 721–738 (2006)

    Article  MATH  ADS  Google Scholar 

  20. Jakšić V., Ogata Y., Pillet C.-A.: The Green–Kubo formula for locally interacting fermionic open systems. Ann. Henri Poincaré 8, 1013–1036 (2007)

    Article  MATH  ADS  Google Scholar 

  21. Jakšić V., Pillet C.-A.: On a model for quantum friction III. Ergodic properties of the spin-boson system. Commun. Math. Phys. 178, 627–651 (1996)

    Article  MATH  ADS  Google Scholar 

  22. Jakšić V., Pillet C.-A.: Spectral theory of thermal relaxation. J. Math. Phys. 38, 1757–1780 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Jakšić V., Pillet C.-A.: On entropy production in quantum statistical mechanics. Commun. Math. Phys. 217, 285–293 (2001)

    Article  MATH  ADS  Google Scholar 

  24. Jakšić V., Pillet C.-A.: Mathematical theory of non-equilibrium quantum statistical mechanics. J. Stat. Phys. 108, 787–829 (2002)

    Article  MATH  ADS  Google Scholar 

  25. Jakšić V., Pillet C.-A.: Non-equilibrium steady states of finite quantum systems coupled to thermal reservoirs. Commun. Math. Phys. 226, 131–162 (2002)

    Article  MATH  ADS  Google Scholar 

  26. Jakšić V., Pillet C.-A.: A note on the entropy production formula. Contemp. Math. 327, 175–180 (2003)

    Google Scholar 

  27. Levitov L.S., Lesovik G.B.: Charge distribution in quantum shot noise. JETP Lett. 58, 230–235 (1993)

    ADS  Google Scholar 

  28. Panangaden, J.: Master’s thesis, McGill University (in preparation)

  29. Pillet, C.-A.: Quantum dynamical systems. In: Attal,S., Joye, A., Pillet, C.-A. (eds.) Open Quantum Systems I. The Hamiltonian Approach. Lecture Notes in Mathematics, vol. 1880. Springer, Berlin (2006)

  30. Robinson D.W.: Return to equilibrium. Commun. Math. Phys. 31, 171–189 (1973)

    Article  MATH  ADS  Google Scholar 

  31. Thirring, W.: Quantum Mathematical Physics: Atoms, Molecules and Large Systems 2nd edn. Springer, Berlin (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vojkan Jakšić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakšić, V., Panangaden, J., Panati, A. et al. Energy Conservation, Counting Statistics, and Return to Equilibrium. Lett Math Phys 105, 917–938 (2015). https://doi.org/10.1007/s11005-015-0769-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-015-0769-7

Mathematics Subject Classification

Keywords

Navigation