Skip to main content
Log in

On the Well-Posedness and Scattering for the Gross–Pitaevskii Hierarchy via Quantum de Finetti

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove the existence of scattering states for the defocusing cubic Gross–Pitaevskii (GP) hierarchy in \({\mathbb{R}^3}\) . Moreover, we show that an exponential energy growth condition commonly used in the well-posedness theory of the GP hierarchy is, in a specific sense, necessary. In fact, we prove that without the latter, there exist initial data for the focusing cubic GP hierarchy for which instantaneous blowup occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adami R., Golse G., Teta A.: Rigorous derivation of the cubic NLS in dimension one. J. Stat. Phys. 127(6), 1194–1220 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  2. Aizenman M., Lieb E.H., Seiringer R., Solovej J.P., Yngvason J.: Bose–Einstein quantum phase transition in an optical lattice model. Phys. Rev. A 70, 023612 (2004)

    Article  ADS  Google Scholar 

  3. Ammari Z., Nier F.: Mean field limit for bosons and infinite dimensional phase-space analysis. Ann. H. Poincaré 9, 1503–1574 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ammari Z., Nier F.: Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states. J. Math. Pures Appl. 95, 585–626 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Anapolitanos I.: Rate of convergence towards the Hartree–von Neumann limit in the mean-field regime. Lett. Math. Phys. 98(1), 1–31 (2011)

    ADS  MATH  MathSciNet  Google Scholar 

  6. Anderson M.H., Ensher J.R., Matthews M.R., Wieman C.E., Cornell E.A.: Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    Article  ADS  Google Scholar 

  7. Chen, X.: On the rigorous derivation of the 3D cubic nonlinear Schrödinger equation with a quadratic trap. Arch. Ration. Mech. Anal. 210(2), 365–408 (2013)

  8. Chen, X., Holmer, J.: On the Klainerman–Machedon conjecture of the quantum BBGKY hierarchy with self-interaction (preprint). http://arxiv.org/abs/1303.5385

  9. Chen T., Pavlović N.: On the Cauchy problem for focusing and defocusing Gross–Pitaevskii hierarchies. Discret. Contin. Dyn. Syst. 27(2), 715–739 (2010)

    Article  MATH  Google Scholar 

  10. Chen T., Pavlović N.: The quintic NLS as the mean field limit of a Boson gas with three-body interactions. J. Funct. Anal. 260(4), 959–997 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen, T., Pavlović, N.:Derivation of the cubic NLS and Gross–Pitaevskii hierarchy from manybody dynamics in d = 3 based on spacetime norms. Ann. H. Poincaré, b(3), 543–588 (2014)

  12. Chen, T., Pavlović, N.: Higher order energy conservation and global wellposedness of solutions for Gross–Pitaevskii hierarchies. Commun. PDE (to appear)

  13. Chen, T., Taliaferro, K.: Positive semidefiniteness and global well-posedness of solutions to the Gross-Pitaevskii hierarchy. Commun. PDE (accepted). http://arxiv.org/abs/1305.1404

  14. Chen T., Pavlović N., Tzirakis N.: Energy conservation and blowup of solutions for focusing GP hierarchies. Ann. Inst. H. Poincare (C) Anal. Non-Lin. 27(5), 1271–1290 (2010)

    Article  ADS  MATH  Google Scholar 

  15. Chen T., Pavlović N., Tzirakis N.: Multilinear Morawetz identities for the Gross–Pitaevskii hierarchy. Contemp. Math. 581, 39–62 (2012)

    Article  Google Scholar 

  16. Chen, T., Hainzl, C., Pavlović, N., Seiringer, R.: Unconditional uniqueness for the cubic Gross–Pitaevskii hierarchy via quantum de Finetti, Commun. Pure Appl. Math., to appear. Preprint available at http://arxiv.org/abs/1307.3168

  17. Davis K.B., Mewes M.-O., Andrews M.R., van Druten N.J., Durfee D.S., Kurn D.M., Ketterle W.: Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)

    Article  ADS  Google Scholar 

  18. Duyckaerts T., Holmer J., Roudenko S.: Scattering for the non-radial 3D cubic nonlinear Schrdinger equation. Math. Res. Lett. 15(6), 1233–1250 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Erdös L., Schlein B., Yau H.-T.: Derivation of the Gross–Pitaevskii hierarchy for the dynamics of Bose–Einstein condensate. Commun. Pure Appl. Math. 59(12), 1659–1741 (2006)

    Article  MATH  Google Scholar 

  20. Erdös L., Schlein B., Yau H.-T.: Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math. 167, 515–614 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Erdös L., Schlein B., Yau H.-T.: Rigorous derivation of the Gross–Pitaevskii equation with a large interaction potential. J. Am. Math. Soc. 22(4), 1099–1156 (2009)

    Article  MATH  Google Scholar 

  22. Erdös L., Schlein B., Yau H.-T.: Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensates. Ann. Math. (2) 172(1), 291–370 (2010)

    Article  MATH  Google Scholar 

  23. Erdös L., Yau H.-T.: Derivation of the nonlinear Schrödinger equation from a many body Coulomb system. Adv. Theor. Math. Phys. 5(6), 1169–1205 (2001)

    MATH  MathSciNet  Google Scholar 

  24. Fröhlich J., Graffi S., Schwarz S.: Mean-field- and classical limit of many-body Schrödinger dynamics for bosons. Commun. Math. Phys. 271(3), 681–697 (2007)

    Article  ADS  MATH  Google Scholar 

  25. Fröhlich J., Knowles A., Pizzo A.: Atomism and quantization. J. Phys. A 40(12), 3033–3045 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Fröhlich J., Knowles A., Schwarz S.: On the mean-field limit of bosons with Coulomb two-body interaction. Commun. Math. Phys. 288(3), 1023–1059 (2009)

    Article  ADS  MATH  Google Scholar 

  27. Fröhlich, J., Tsai, T.-P., Yau, H.-T.: On a classical limit of quantum theory and the non-linear Hartree equation, GAFA 2000 (Tel Aviv, 1999). Geom. Funct. Anal. Special Volume(I), 5778 (2000)

  28. Glassey R.: On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equation. J. Math. Phys. 18(9), 1794–1797 (1977)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Gressman P., Sohinger V., Staffilani G.: On the uniqueness of solutions to the periodic 3D Gross–Pitaevskii hierarchy. J. Funct. Anal. 266(7), 4705–4764 (2014)

    Article  MathSciNet  Google Scholar 

  30. Grillakis M., Margetis A.: A priori estimates for many-body Hamiltonian evolution of interacting boson system. J. Hyperbolic Differ. Equ. 5(4), 857–883 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Grillakis M., Machedon M., Margetis A.: Second-order corrections to mean field evolution for weakly interacting Bosons. I. Commun. Math. Phys. 294(1), 273–301 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Hepp K.: The classical limit for quantum mechanical correlation functions. Commun. Math. Phys. 35, 265–277 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  33. Hewitt E., Savage L.J.: Symmetric measures on Cartesian products. Trans. Am. Math. Soc. 80, 470–501 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  34. Hudson R.L., Moody G.R.: Locally normal symmetric states and an analogue of de Finettis theorem. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 33, 343–351 (1975/1976)

    Article  MathSciNet  Google Scholar 

  35. Kirkpatrick K., Schlein B., Staffilani G.: Derivation of the two dimensional nonlinear Schrödinger equation from many body quantum dynamics. Am. J. Math. 133(1), 91130 (2011)

    MathSciNet  Google Scholar 

  36. Klainerman S., Machedon M.: On the uniqueness of solutions to the Gross–Pitaevskii hierarchy. Commun. Math. Phys. 279(1), 169–185 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Lanford O.E.: The classical mechanics of one-dimensional systems of infinitely many particles. Commun. Math. Phys. 9, 176–191 (1968)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. Lanford O.E.: The classical mechanics of one-dimensional systems of infinitely many particles. Commun. Math. Phys. 11, 257–292 (1969)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Lanford O.E.: Time evolution of large classical systems. In: Moser, J. (eds) Dynamical Systems, Theory and Applications. Lecture Notes in Physics, vol. 38, Springer, Berlin (1974)

    Google Scholar 

  40. Lewin, M., Nam, P.T., Rougerie, N.: Derivation of Hartree’s theory for generic mean-field Bose systems. Preprint arXiv:1303.0981

  41. Lieb, E.H, Loss, M.: Analysis, Graduate Studies in Mathematics, vol. 14. AMS, Providence, RI (2001)

  42. Lieb E.H., Seiringer R.: Proof of Bose–Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88, 170409 (2002)

    Article  ADS  Google Scholar 

  43. Lieb, E.H., Seiringer, R., Yngvason, J.: Bosons in a trap: A rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A 61, 043602-1–13 (2000)

  44. Lieb, E.H., Seiringer, R., Yngvason, J.: A rigorous derivation of the Gross–Pitaevskii energy functional for a two-dimensional Bose gas. Commun. Math. Phys. 224 (2001)

  45. Lieb E.H., Seiringer R., Solovej J.P., Yngvason J.: The Mathematics of the Bose Gas and its Condensation. Birkhäuser, Boston (2005)

    MATH  Google Scholar 

  46. Pickl P.: Derivation of the time dependent Gross–Pitaevskii equation without positivity condition on the interaction. J. Stat. Phys. 140(1), 76–89 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. Pickl P.: A simple derivation of mean field limits for quantum systems. Lett. Math. Phys. 97(2), 151–164 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. Rodnianski I., Schlein B.: Quantum fluctuations and rate of convergence towards mean field dynamics. Commun. Math. Phys. 291(1), 31–61 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  49. Spohn H.: Kinetic equations from Hamiltonian dynamics. Rev. Mod. Phys. 52(3), 569–615 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  50. Stormer E.: Symmetric states of infinite tensor products of C*-algebras. J. Funct. Anal. 3, 48–68 (1969)

    Article  MathSciNet  Google Scholar 

  51. Tao, T.: Nonlinear dispersive equations. In: Local and Global Analysis. CBMS 106. AMS (2006)

  52. Vlasov, S.N., Petrishchev, V.A., Talanov, V.I.: Averaged description of wave beams in linear and nonlinear media (the method of moments). Radiophys. Quantum Electron. 14, 10621070 (1971). Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika 14, 1353–1363 (1971)

  53. Xie, Z.: Uniqueness of Gross–Pitaevskii (GP) solution on 1D and 2D nonlinear Schrödinger equation. Preprint arXiv:1305.7240

  54. Zakharov, V.E.: Collapse of Langmuir waves. Sov. Phys. JETP (Transl. J. Exp. Theor. Phys. Acad. Sci. USSR) 35, 908–914 (1972)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Hainzl, C., Pavlović, N. et al. On the Well-Posedness and Scattering for the Gross–Pitaevskii Hierarchy via Quantum de Finetti. Lett Math Phys 104, 871–891 (2014). https://doi.org/10.1007/s11005-014-0693-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-014-0693-2

Mathematics Subject Classification (2010)

Keywords

Navigation