Abstract
Two recent deformation schemes for quantum field theories on two-dimensional Minkowski space, making use of deformed field operators and Longo–Witten endomorphisms, respectively, are shown to be equivalent.
Article PDF
References
Alazzawi, S.: Deformations of Fermionic Quantum Field Theories and Integrable Models. Lett. Math. Phys. (2012). doi:10.1007/s11005-012-0576-3
Bischoff, M.:Construction of Models in low-dimensional Quantum Field Theory using Operator Algebraic Methods. Ph.D. Thesis, Università à di Roma “Tor Vergata” (2012)
Bischoff, M., Tanimoto, Y.: Construction of wedge-local nets of observables through Longo–Witten endomorphisms. II. Commun. Math. Phys. (2012). doi:10.1007/s00220-012-1593-x
Borchers H.J.: The CPT theorem in two-dimensional theories of local observables. Commun. Math. Phys. 143, 315–332 (1992)
Bostelmann H., Lechner G., Morsella G.: Scaling limits of integrable quantum field theories. Rev. Math. Phys. 23(10), 1115–1156 (2011)
Buchholz D.: Collision theory for massless bosons. Commun. Math. Phys. 52, 147 (1977)
Buchholz D., Lechner G.: Modular nuclearity and localization. Ann. Henri Poincaré 5, 1065–1080 (2004)
Buchholz D., Lechner G., Summers S.J.: Warped convolutions, Rieffel deformations and the construction of quantum field theories. Commun. Math. Phys. 304, 95–123 (2011)
Buchholz, D., Summers, S.J.: Warped convolutions: a novel tool in the construction of quantum field theories. In: Seiler, E., Sibold, K. (eds.) Quantum Field Theory and Beyond: Essays in Honor of Wolfhart Zimmermann. World Scientific, pp. 107–121 (2008)
Dybalski W., Tanimoto Y.: Asymptotic completeness in a class of massless relativistic quantum field theories. Commun. Math. Phys. 305, 427–440 (2011)
Fendley, P., Saleur, H.: Massless integrable quantum field theories and massless scattering in 1+1 dimensions. Tech. Report USC-93-022, October (1993)
Grosse H., Lechner G.: Wedge-local quantum fields and noncommutative Minkowski Space. JHEP 11, 012 (2007)
Guichardet A.: Symmetric Hilbert Spaces and Related Topics. Springer, Berlin (1972)
Haag R.: Local Quantum Physics—Fields, Particles Algebras, 2 edn. Springer, Berlin (1996)
Lechner G.: Polarization-free quantum fields and interaction. Lett. Math. Phys. 64, 137–154 (2003)
Lechner G.: Construction of quantum field theories with factorizing S-matrices. Commun. Math. Phys. 277, 821–860 (2008)
Lechner G.: Deformations of quantum field theories and integrable models. Commun. Math. Phys. 312(1), 265–302 (2012)
Longo R., Rehren K.H.: Boundary quantum field theory on the interior of the Lorentz hyperboloid. Commun. Math. Phys. 311(3), 769–785 (2012)
Longo R., Witten E.: An algebraic construction of boundary quantum field theory. Commun. Math. Phys. 303(1), 213–232 (2011)
Morfa-Morales E.: Deformations of quantum field theories on de Sitter spacetime. J. Math. Phys. 52, 102304 (2011)
Much A.: Wedge-local quantum fields on a nonconstant noncommutative spacetime. J. Math. Phys. 53, 082303 (2012)
Plaschke, M.: Wedge local deformations of charged fields leading to anyonic commutation relations (2012). http://arxiv.org/abs/1208.6141v1
Takesaki, M.:Theory of Operator Algebras II. Springer, Berlin (2003). http://www.springer.com/mathematics/analysis/book/978-3-540-42914-2
Tanimoto Y.: Construction of wedge-local nets of observables through Longo–Witten endomorphisms. Commun. Math. Phys. 314(2), 443–469 (2012)
Tanimoto Y.: Noninteraction of waves in two-dimensional conformal field theory. Commun. Math. Phys. 314(2), 419–441 (2012)
Wollenberg, M.: Notes on Perturbations of Causal Nets of Operator Algebras. SFB 288 Preprint, N2. 36 (1992, unpublished)
Author information
Authors and Affiliations
Corresponding author
Additional information
GL and JS supported by FWF project P22929-N16 “Deformations of quantum field theories”.
Y. Tanimoto supported by Deutscher Akademischer Austauschdienst.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
About this article
Cite this article
Lechner, G., Schlemmer, J. & Tanimoto, Y. On the Equivalence of Two Deformation Schemes in Quantum Field Theory. Lett Math Phys 103, 421–437 (2013). https://doi.org/10.1007/s11005-012-0599-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11005-012-0599-9