Skip to main content
Log in

Rotation Numbers of Linear Hamiltonian Systems with Phase Transitions over Almost Periodic Lattices

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper deals with the dynamics of linear Hamiltonian systems which have almost periodic Hamiltonians and symplectic phase transitions over almost periodic lattices. By introducing some discrete skew-product dynamical systems based on certain joint hulls of Hamiltonians and lattices, it will be proved that such a system admits a well-defined rotation number, which gives a global, topological understanding on the motion of these systems in symplectic groups and manifolds of Lagrangian planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnol’d V.: On a characteristic class entering in a quantum condition. Funct. Anal. Appl. 1, 1–14 (1967)

    Article  MATH  Google Scholar 

  2. Fabbri R., Johnson R., Nunez C.: Rotation number for non-autonomous linear Hamiltonian systems I. Basic properties. Z. Angew. Math. Phys. 54, 484–502 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fabbri R., Johnson R., Nunez C.: Rotation number for non-autonomous linear Hamiltonian systems II. The Floquet coefficient. Z. Angew. Math. Phys. 54, 652–676 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Favorov S., Kolbasina, Ye.: Almost periodic discrete sets. arXiv:1002.0091v1

  5. Fink A.: Almost Periodic Differential Equations. Springer, New York (1974)

    MATH  Google Scholar 

  6. Johnson R.: M-functions and Floquet exponents for linear differential systems. Ann. Mat. Pura Appl. 147, 211–248 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Johnson, R., Moser, J.: The rotation number for almost periodic potentials. Commun. Math. Phys. 84, 403–438 (1982), Erratum: Commun. Math. Phys. 90, 317–318 (1983)

    Google Scholar 

  8. Johnson R., Novo S., Obaya R.: Ergodic properties and Weyl M-functions for random linear Hamiltonian systems. Proc. R. Soc. Edinb. Sect. A 130, 1045–1079 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Katok A., Hasselblatt B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  10. Kronig R., Penney W.: Quantum mechanics in crystal lattices. Proc. R. Soc. Lond. 130, 499–513 (1931)

    Article  ADS  Google Scholar 

  11. Lenz D., Stollmann P.: An ergodic theorem for Delone dynamical systems and existence of the integrated density of states. J. Anal. Math. 97, 1–24 (2005)

    Article  MathSciNet  Google Scholar 

  12. Li, L., Zhang, M.: On almost periodicity: a dynamics approach (preprint)

  13. Long, Y.: The Index Theory of Hamiltonian Systems with Applications. Science Press, Beijing (1993, in Chinese)

  14. Niikuni H.: The rotation number for the generalized Kronig-Penney Hamiltonians. Ann. Henri Poincaré 8, 1279–1301 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Novo S., Núñez C., Obaya R.: Ergodic properties and rotation number for linear Hamiltonian systems. J. Differ. Equ. 148, 148–185 (1998)

    Article  MATH  Google Scholar 

  16. Novo S., Núñez C.: Linear Hamiltonian systems with absolutely continuous dynamics. Nonlinear Anal. 47, 1401–1406 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yakubovich V.A. Arguments on the group of symlectic matrices. Mat. Sb. 55(97), 255–280 (1961, in Russian)

    Google Scholar 

  18. Yakubovich V.A., Starzhinskii V.M.: Linear Differential Equations with Periodic Coefficients. Wiley, New York (1975)

    MATH  Google Scholar 

  19. Zhang M.: The rotation number approach to eigenvalues of the one-dimensional p-Laplacian with periodic potentials. J. Lond. Math. Soc. (2) 64, 125–143 (2001)

    Article  MATH  Google Scholar 

  20. Zhang M., Zhou Z.: Rotation numbers of linear Schrödinger equations with almost periodic potentials and phase transmissions. Ann. Henri Poincaré 11, 765–780 (2010)

    Article  ADS  MATH  Google Scholar 

  21. Zhou, Z.: Unique ergodic theorem on discontinuous skew-product flows and rotation numbers of linear Schrödinger equations. Doctoral Dissertation, Tsinghua University, Beijing (2010, in Chinese)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Li.

Additional information

M. Zhang was supported by the National Basic Research Program of China (Grant no. 2006CB805903), the Doctoral Fund of Ministry of Education of China (Grant no. 20090002110079), the National 111 Project of China (2007) and the Natural Science Foundation of China (Grant no. 10531010).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Zhang, M. Rotation Numbers of Linear Hamiltonian Systems with Phase Transitions over Almost Periodic Lattices. Lett Math Phys 100, 51–75 (2012). https://doi.org/10.1007/s11005-011-0475-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-011-0475-z

Mathematics Subject Classification (2010)

Keywords

Navigation