Skip to main content
Log in

Gutzwiller’s semiclassical trace formula and Maslov-type index theory for symplectic paths

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

Gutzwiller’s famous semiclassical trace formula plays an important role in theoretical and experimental quantum mechanics with tremendous success. We review the physical derivation of this deep periodic orbit theory in terms of the phase space formulation with a view toward the Hamiltonian dynamical systems. The Maslov phase appearing in the trace formula is clarified by Meinrenken as Conley–Zehnder index for periodic orbits of Hamiltonian systems. We also survey and compare various versions of Maslov indices to establish this fact. A refinement and improvement to Conley–Zehnder’s index theory in which we will recall all essential ingredients is the Maslov-type index theory for symplectic paths developed by Long and his collaborators. It would shed new light on the computations and understandings of the semiclassical trace formula. The insights in Gutzwiller’s work also seems plausible for the studies of Hamiltonian systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbondandolo, A.: Morse Theory For Hamiltonian Systems, Chapman & Hall/CRC research notes in mathematics series, vol. 425, Chapman & Hall/CRC, Boca Raton, FL (2001)

  2. Amann, H., Zehnder, E.: Nontrivial solutions for a class of non-resonance problems and applications to nonlinear differential equations. Ann. Scuola Norm. Sup. Pisa. Cl. Sci. Ser. 4. 7, 539–603 (1980)

  3. An, T. , Long, Y.: On the index theories of second order Hamiltonian systems. Nonlinear Anal. TMA 34, 585–592 (1998)

  4. Arnold, V.I.: On a characteristic class entering into conditions of quantization. Funkcional. Anal. i Prilozen. 1, 1–14 (1967)

    Article  MathSciNet  Google Scholar 

  5. Balazs, N.L., Voros, A.: Chaos on the pseudosphere. Phys. Rep. 143, 109–240 (1986)

    Article  MathSciNet  Google Scholar 

  6. Balian, R., Bloch, C.: Distribution of eigenfrequencies for the wave equation in a finite domain I. Three-dimensional problem with smooth boundary surface. Ann. Phys. 60, 401–447 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  7. Balian, R., Bloch, C.: Distribution of eigenfrequencies for the wave equation in a finite domain II. electromagnetic field. Riemannian spaces. Ann. Phys. 64, 271–307 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  8. Balian, R., Bloch, C.: Distribution of eigenfrequencies for the wave equation in a finite domain III. Eigenfrequency density oscillations. Ann. Phys. 69, 76–160 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  9. Balian, R., Bloch, C.: Solutions of the Schrödinger equation in terms of classical paths. Ann. Phys. 85, 514–545 (1974)

    Article  MATH  Google Scholar 

  10. Batalin, L., Vilkovisky, G.: Gauge algebra and quantization. Phys. Lett. 102B, 27–31 (1981)

    Article  MathSciNet  Google Scholar 

  11. Behtash, A., Dunne, G.V., Schäfer, T., Sulejmanpasic, T., Ünsal, M.: Toward Picard–Lefschetz theory of path integrals, complex saddles and resurgence (2015). arXiv:1510.03435

  12. Berry, M.V.: Some Quantum-to-classical Asymptotics, Chaos et physique quantique (Les Houches, 1989), pp. 251–304. North-Holland, Amsterdam (1991)

  13. Berry, M.V., Howls, C.J.: High orders of the Weyl expansion for quantum billiards: resurgence of periodic orbits, and the Stokes phenomenon. Proc. R. Soc. Lond. Ser. A 447, 527–555 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Berry, M.V., Tabor, M.: Closed orbits and the regular bounded spectrum. Proc. R. Soc. Lond. Ser. A 349, 101–123 (1976)

    Article  Google Scholar 

  15. Bott, R.: On the iteration of closed geodesics and the Sturm intersection theory. Commun. Pure Appl. Math. 9, 171–206 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bourgade, P., Keating, J.P.: Quantum chaos, random matrix theory, and the Riemann \(\zeta \)-function, in Chaos (Séminaire Poincaré), Prog. Math. Phys., vol. 66, pp. 125–168. Birkhäuser/Springer, Basel (2013)

  17. Brummelhuis, R., Uribe, A.: A semiclassical trace formula for Schrödinger operators. Commun. Math. Phys. 136, 567–584 (1991)

    Article  MATH  Google Scholar 

  18. Cappell, S.E., Lee, R., Miller, E.Y.: On the Maslov index. Commun. Pure Appl. Math. 47, 121–186 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Chang, K.C.: Infinite Dimensional Morse Theory and Multiple Solution Problems. Birkhäuser, Boston (1993)

    Book  MATH  Google Scholar 

  20. Cartier, P., Voros, A.: Une nouvelle interprétation de la formule des traces de Selberg, The Grothendieck Festschrift, vol. II, pp. 1–67, Progress in Mathematics 87, Birkhäuser Boston, Boston (1990)

  21. Chazarain, J.: Formule de Poisson pour les variètès riemanniennes. Invent. Math. 24, 65–82 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  22. Colin de Verdière, Y.: Spectre du Laplacien et longueurs des géodésiques périodiques I. Compos. Math. 27, 80–106 (1973)

    MATH  Google Scholar 

  23. Colin de Verdière, Y.: Spectre du Laplacien et longueurs des géodésiques périodiques II. Compos. Math. 27, 159–184 (1973)

    MATH  Google Scholar 

  24. Colin de Verdière, Y.: Introduction à la mécanique semi-classique. L’Enseignement Mathématique 44, 23–51 (1998)

    MATH  MathSciNet  Google Scholar 

  25. Colin de Verdière, Y.: Semiclassical Spectra and Closed Orbits. In: Françise, J.-P., Naber, G., Tsun, T.S. (eds.) Encyclopedia of Mathematical Physics. pp. 512–518. Elsevier, Oxford (2006)

  26. Colin de Verdière, Y.: Spectrum of the Laplace operator and periodic geodesics: thirty years after. Ann. Inst. Fourier 57(7), 2429–2463 (2007)

  27. Combescure, M., Ralston, J., Robert, D.: A proof of the Gutzwiller semiclassical trace formula using coherent states decomposition. Commun. Math. Phys. 202, 463–480 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Conley, C., Zehnder, E.: Morse-type index theory for flows and periodic solutions for Hamiltonian equations. Commun. Pure Appl. Math. 37, 207–253 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  29. Creagh, S.C., Robbins, J.M., Littlejohn, R.G.: Geometric properties of Maslov indices in the semiclassical trace formula for the density of states. Phys. Rev. A 42(4), 1907–1922 (1990)

  30. Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G., Vattay, G.: Classical and quantum chaos: a cyclist treatise. http://www.nbi.dk/ChaosBook/

  31. Duistermaat, J.J.: On the Morse index in variational calculus. Adv. Math. 21, 173–195 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  32. Duistermaat, J.J., Guillemin, V.: The spectrum of positive elliptic operators and periodic geodesics. Invent. Math. 29, 39–79 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  33. Einstein, A.: Zum Quantensatz von Sommerfeld und Epstein, Verh Dutsch Phys. Ges 19, 82–92 (1917) (English translation: On the Quantum Theorem of Sommerfeld and Epstein, in The Collected Papers of Albert Einstein, Volume 6: The Berlin Years: Writings, 1914–1917, A. Engel, transl. and E. Schucking, (Princeton Univ. Press, Princeton NJ 1997))

  34. Ekeland, I.: Convexity methods in Hamiltonian mechanics. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  35. Faure, F., Tsujii, M.: Prequantum transfer operator for symplectic Anocov diffeomorphism. Astérisque 315 (2015)

  36. Fei, G., Qiu, Q.: Periodic solutions of asymptotically linear Hamiltonian systems. Chin. Ann. Math. 18B, 359–372 (1997)

    MATH  MathSciNet  Google Scholar 

  37. Feynman, R., Hibbs, A.: Quantum Mechanics and Path Interals. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  38. Faddeev, L.D., Popov, V.N.: Perturbation theory for gauge-invariant fields. Phys. Lett. 25 B, 29–30 (1967), see also Kiev Report No ITP 67-36 (1967) (English translation available as Paper 2 in L. D. Faddeev, 40 years in Mathematical Physics, World Scientific Series in 20th Century Mathematics, World Scientific Publishing, Singapore, 1995)

  39. Foxman, J.A., Robbins, J.M.: Periodic orbit Maslov indices for systems with time-reversal symmetry. J. Phys. A Math. Gener. 30, 8187–8190 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  40. Gelfand, I.M., Lidskii, V.B.: On the structure of the regions of stability of linear canonical systems of differential equations with periodic coefficients. Usp. Mat. Nauk. 10, 3–40 (1955) [in Russian]; Transl. AMS, 8, no. 2(1958), 143–181

  41. de Gosson, M.A.: La définition de l’indice de Maslov sans hypothèse de transversalité. C.R. Acad. Sci. Paris 310, 279–282 (1990)

  42. de Gosson, M.: On the usefulness of an index due to Leray for studying the intersections of Lagrangian and symplectic paths. J. Math. Pures Appl. 91, 598–613 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  43. Gouëzel, S.: Spectre du flot géodésique en courbure négative [d’après F. Faure et M. Tsujii], Séminaire Bourbaki, 67ème année, 2014–2015, n\(^\circ \) 1098

  44. Guillemin, V.: Lectures on spectral theory of elliptic operators. Duke Math. J. 44, 485–517 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  45. Guillemin, V., Sternberg, S.: Geometric Asymptotics, Mathematical Surveys, Vol. 14. AMS , Providence (1977)

  46. Guillemin, V., Uribe, A.: Circular symmetry and the trace formula. Invent. Math. 96, 385–423 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  47. Guillemin, V.: Wave-trace invariants. Duke Math. J. 83, 287–352 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  48. Gutzwiller, M.C.: The phase integral approxiamtion in momentum space and the bounded states of an atom. J. Math. Phys. 8, 1979–2000 (1967)

    Article  Google Scholar 

  49. Gutzwiller, M.C.: The phase integral approxiamtion in momentum space and the bounded states of an atom II. J. Math. Phys. 10, 1004–1020 (1969)

    Article  Google Scholar 

  50. Gutzwiller, M.C.: The energy spectrum according to classical mechanics. J. Math. Phys. 11, 1791–1806 (1970)

    Article  Google Scholar 

  51. Gutzwiller, M.C.: Periodic orbits and classical quantization conditions. J. Math. Phys. 12, 343–358 (1971)

    Article  Google Scholar 

  52. Gutzwiller, M.C.: The anisotropic Kepler problem in two dimensions. J. Math. Phys. 14, 343–358 (1973)

    Article  MathSciNet  Google Scholar 

  53. Gutzwiller, M.C.: The classical quantization of a Hamiltonian with Ergodic behavior. Phy. Rev. Lett. 45, 150–153 (1980)

    Article  Google Scholar 

  54. Gutzwiller, M.C.: Stochastic behavior in quantum scattering, Order in chaos (Los Alamos, N.M., 1982). Phys. D 7, 341–355 (1983)

    Article  MathSciNet  Google Scholar 

  55. Gutzwiller, M.C.: Chaos in Classical and Quantum Mechanics. Interdisciplinary Applied Mathematics, vol. 1. Springer-Verlag, New York (1990)

  56. Gutzwiller, M.C.: Quamtum chaos. Scholarpedia 2(12), 3164 (2007)

    Article  Google Scholar 

  57. Hejhal, D.: The Selberg trace formula and the Riemann \(\zeta \) function. Duke Math. J. 43, 441–482 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  58. Hejhal, D.: The Selberg Trace Formula for PSL\((2,\mathbf{R})\), vol. 1, Lecture Notes in Mathematics 548. Springer, Berlin (1976)

  59. Hejhal, D.: The Selberg trace formula for PSL(2,R), vol. 2, Lecture Notes in Mathematics 1001. Springer, New York (1983)

  60. Hörmander, L.: Fourier integral operators I. Acta Math. 127, 79–183 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  61. Hu, X., Sun, S.: Index and stability of symmetric periodic orbits in Hamiltonian systems with application to figure-eight orbit. Commun. Math. Phys. 290, 737–777 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  62. Huber, H.: Zur analytischen Theorie hyperbolischen Raumformen und Bewegungsgruppen. Math. Ann. 138, 1–26 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  63. Kashiwara, M., Schapira, P.: Sheaves on Manifolds, Grundlehren der mathematischen Wissenschaften, vol. 292. Springer, Berlin (1990)

    Google Scholar 

  64. Krein, M.: Generalization of certain investigations of A.M. Liapunov on linear differential equations with periodic coefficients. Doklady Akad. Nauk USSR 73, 445–448 (1950)

  65. Krein, M.: On the application of an algebraic proposition in the theory of monodromy matrices. Usp. Math. Nauk 6, 171–177 (1951)

    Google Scholar 

  66. Krein, M.: On the theory of entire matrix-functions of exponential type. Ukr. Math. J. 3, 164–173 (1951)

    MathSciNet  Google Scholar 

  67. Krein, M.: On some maximum and minimum problems for characteristic numbers and Liapunov stability zones. Prikl. Math. Mekh. 15, 323–348 (1951)

    Google Scholar 

  68. Krein, M.: On criteria for stability and boundedness of solutions of periodic canonical systems. Prikl. Math. Mekh. 19, 641–680 (1955)

    Google Scholar 

  69. Kubo, K., Shimada, T.: Periodic orbit theory revisited in the anisotropic Kepler problem. Prog. Theor. Exp. Phys. 2014, 023A06 (2014)

  70. Lax, P.D., Phillips, R.S.: Scattering Theory for Automorphic Functions. In: Annals of Mathematics Studies, vol. 87. Princeton University Press, Princeton (1976)

  71. Leray, J.: Lagrangian Analysis and Quantum Mechanics, A Mathematical Structure Related to Asymptotic Expansions and the Maslov Index. The MIT Press, Cambridge (1981)

    MATH  Google Scholar 

  72. Lerner, I.V., Keating, J.P., Khmelnitskii, D.E. (eds.): Supersymmetry and Trace Formulae. Klumer Academic/ Plenum Publishers, New York (1999)

    Google Scholar 

  73. Lion, G., Vergne, M.: The Weil Representation, Maslov Index and Theta Series, Progress in Mathematics, vol. 6. Birkhäuser, Basel (1980)

  74. Littlejohn, R.G., Robbins, J.M.: New way to compute Maslov indices. Phy. Rev. A 36, 2953–2961 (1987)

    Article  MathSciNet  Google Scholar 

  75. Long, Y.: Maslov-type index, degenerate critical points, and asymptotically linear Hamiltonian systems. Sci. China Ser. A 33, 1409–1419 (1990)

    MATH  MathSciNet  Google Scholar 

  76. Long, Y.: A Maslov-type index theory for symplectic paths. Top. Meth. Nonl. Anal. 10, 47–78 (1997)

    MATH  MathSciNet  Google Scholar 

  77. Long, Y.: Bott formula of the Maslov-type index theory. Pacific J. Math. 187, 113–149 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  78. Long, Y.: Index Theory for Symplectic Paths with Applications, Progress in Mathematics, vol. 207. Birkhäuser (2002)

  79. Long, Y.: Index Theory for Symplectic Matrix Paths with Applications, Notes for lectures at PIMS, UBC, June 2008, revision (2012)

  80. Long, Y., Zehnder, E.: Morse-theory for forced oscillations of asymptotically linear Hamiltonian systems. In: S. Albeverio et al. (eds.) Stochastic Processes, Physics and Geometry-Ascona and Locarno, 1988. pp. 528–563. World Scientific Publishing, Teaneck (1990)

  81. Main, J., Wunner, G.: Periodic Orbit Quantization: How to make Semiclassical Trace Formulae Convergent, Contribution to “Festschrift in honor of Martin Gutzwiller”. In: A. Inomata et al. (eds.) Found. Phys. 31, 447–474 (2001)

  82. Marklof, J.: Selberg’s trace formula: an introduction. In: Proceedings of the International School “Quantum Chaos on Hyperbolic Manifolds”, Schloss Reisensburg, Gunzburg, Germany, 4–11, Oct. 2003, Springer Lecture Notes in Physics (2003). arXiv:math/0407288

  83. Maslov, V.P.: Théorie des perturbations et méthodes asymptotiques. Dunod, Paris (1972)

    MATH  Google Scholar 

  84. McKean, H.P.: Selberg’s trace formula as applied to a compact Riemann surface. Commun. Pure Appl. Math., 25, 225–246 (1972); 27, 134 (1974) (correction)

  85. Mehlig, B., Wilkinson, M.: Semiclassical trace formulae using coherent states. Ann. Phys. (Leipzig) 10, 541–552 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  86. Meinrenken, E.: Semiclassical principal symbols and Gutawiller’s trace formula. Rep. Math. Phys. 31, 279–295 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  87. Meinrenken, E.: Trace formulas and the Conley–Zehnder index. J. Geom. Phys. 13, 1–15 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  88. Moser, J.K.: New aspects in the theory of stability of Hamiltonian systems. Commun. Pure Appl. Math. 11, 81–114 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  89. Muratore-Ginanneschi, P.: Path integration of closed loops and Gutzwiller’s trace formula. Phys. Rep. 38, 299–397 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  90. Pantev, T., Toën, B., Vaquié, M., Vezzosi, G.: Shifted symplectic structures. Publ. Math. Inst. Hautes études Sci. 117, 271–328 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  91. Paul, T., Uribe, A.: The semi-classical trace formula and propagation of wave packets. J. Funct. Anal. 132, 192–249 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  92. Pletyukhov, M., Brack, M.: On the canonically invariant calculation of Maslov indices. J. Phys. A 36, 9449–9469 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  93. Rabinowitz, P.H.: Periodic solutions of Hamiltonian systems. Commun. Pure Appl. Math. 31, 157–184 (1978)

    Article  MathSciNet  Google Scholar 

  94. Robbin, J., Salamon, D.: The Maslov index for paths. Topology 32, 827–844 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  95. Robbin, J., Salamon, D.: The spectral flow and the Maslov index. Bull. Lond. Math. Soc. 27, 1–33 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  96. Robbins, J.M.: Discrete symmetries in periodic-orbit theory. Phy. Rev. A 40, 2128–2136 (1989)

    Article  MathSciNet  Google Scholar 

  97. Robbins, J.M.: Maslov indices in the Gutzwiller trace formula. Nonlinearity 4, 343–363 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  98. Robbins, J.M.: Winding number formula for Maslov indices. Chaos 2, 145–147 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  99. Robbins, J.M., Littlejohn, R.G.: Maslov indices of resonant tori. Phy. Rev. Lett. 58, 1388–1391 (1987)

    Article  MathSciNet  Google Scholar 

  100. Sauzin, D.: Introduction to 1-summability and resurgence (2014). arXiv:1405.0356

  101. Schwarz, A.: Semiclassical approximation in Batalin–Vilkovisky formalism. Commun. Math. Phys. 158, 373–396 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  102. Seidel, P.: Graded Lagrangian submanifolds. Bull. Soc. Math. Fr. 128, 103–146 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  103. Selberg, A.: Harminic analysis and discontinous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc. 20, 47–87 (1956)

    MATH  MathSciNet  Google Scholar 

  104. Sugita, A.: Geometrical properties of Maslov indices in periodic-orbit theory. Phys. Lett. A 266, 321–330 (2000). arXiv:chao-dyn/9909040 (1999)

  105. Sugita, A.: Semiclassical trace formulas in terms of phase space path integrals. Ann. Phys. 288, 277–324 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  106. Uribe, A.: Trace formulae, First Summer School in Analysis and Mathematical Physics (Cuernavaca Morelos, 1998), 61–90, Contemp. Math., vol. 260. American Mathematical Society, Providence (2000)

  107. Uribe, A., Wang, Z.: A brief introduction to semiclassical analysis. Proc. Symp. Pure Math. 84, 73–89 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  108. Viterbo, C.: A new obstruction to embedding Lagrangian tori. Invent. Math. 100, 301–320 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  109. Watkins, M.R.: http://empslocal.ex.ac.uk/people/staff/mrwatkin/zeta/physics.htm

  110. Yakubovich, V., Starzhinskii, V.: Linear Differential Equations with Periodic Coefficients. Wiley, New York (1975)

    Google Scholar 

  111. Zelditch, S.: Wave trace invariant at elliptic closed geodesics. GAFA 7, 145–213 (1997)

    MATH  Google Scholar 

  112. Zelditch, S.: Wave invariants for non-degenerate closed geodesics. GAFA 8, 179–207 (1998)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank Professor Yiming Long for teaching me the fine points in Maslov-type index theory for symplectic paths, and for many encouragements and supports during the past two decades. Thanks also go to the referee and Pengfei Zhang for their careful readings and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanzhong Sun.

Additional information

Dedicated to Professor Paul Henry Rabinowitz with admiration.

The study was partially supported by NSFC (Nos. 10731080, 11131004, 11271269), PHR201106118, the Institute of Mathematics and Interdisciplinary Science at CNU.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S. Gutzwiller’s semiclassical trace formula and Maslov-type index theory for symplectic paths. J. Fixed Point Theory Appl. 19, 299–343 (2017). https://doi.org/10.1007/s11784-016-0355-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-016-0355-3

Keywords

Mathematics Subject Classification

Navigation