Skip to main content
Log in

On the Reducibility of the Weyl Algebra for a Semibounded Space

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

When the configuration space of a quantum particle is semibounded, the von Neumann algebra of the observables \({\mathcal{W}_+}\) is generated by a unitary group \({\{V(\beta) = {\rm exp}(-i\beta q)\},\,\beta\in\mathbb{R}}\) , and a semigroup {U(α)}, α ≥ 0, of isometries. We show that when \({\mathcal W_+}\) is a factor it is completely reducible into equivalent components, and that in each component the lower end x 0 of the spectrum of q is the same. We give an algebraic characterization of x 0 and also obtain a straightforward new proof that the irreducible representations of \({\mathcal W_+}\) with the same value of x 0 are equivalent. In the general case \({\mathcal W_+}\) decomposes into the direct integral of factors which correspond to the possible values of x 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhiezer N.I., Glazman I.M. (1966) Theory of Linear Operators in Hilbert Space. Ungar, New York, pp 110–111

    Google Scholar 

  2. Arai A. (2008) On the uniqueness of weak Weyl representations of the canonical commutation relations. Lett. Math. Phys. 85: 15–25

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Bracci L., Picasso L.E. (2006) On the Weyl algebras for systems with semibounded and bounded configuration space. J. Math. Phys. 47: 112102

    Article  ADS  MathSciNet  Google Scholar 

  4. Cooper J.L.B. (1947) One-parameter semigroups of isometric operators in Hilbert space. Ann. Math. 48: 827–842

    Article  Google Scholar 

  5. Gomez F. (2008) Selfadjoint time operators and invariant subspaces. Rep. Math. Phys. 61: 123–148

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Schmüdgen K. (1983) On the Heisenberg commutation relation. I. J. Funct. Anal. 50: 8–49

    Article  MATH  MathSciNet  Google Scholar 

  7. Schwartz J.T. (1967) W-* Algebras. Gordon and Breach, New York, pp 46–64

    Google Scholar 

  8. Szökefalvi-Nagy B., Foiaş C. (1970) Harmonic Analysis of Operators in Hilbert Spaces. North-Holland, Amsterdam, pp 145–151

    Google Scholar 

  9. Thirring W. (2001) Quantum Mathematical Physics. Springer, New York, pp 85–89

    Google Scholar 

  10. von Neumann J. (1931) Die Eindeutigkeit der Schrödingerschen Operatoren. Math. Ann. 104: 570–578

    Article  MathSciNet  Google Scholar 

  11. von Neumann J. (1949) Rings of operators: reduction theory. Ann. Math. 50: 401–485

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Bracci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bracci, L., Picasso, L.E. On the Reducibility of the Weyl Algebra for a Semibounded Space. Lett Math Phys 89, 277–285 (2009). https://doi.org/10.1007/s11005-009-0334-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-009-0334-3

Mathematics Subject Classification (2000)

Keywords

Navigation