Skip to main content
Log in

Existence of Locally Maximally Entangled Quantum States via Geometric Invariant Theory

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We study a question which has natural interpretations both in quantum mechanics and in geometry. Let \(V_{1},\cdots , V_{n}\) be complex vector spaces of dimension \(d_{1},\ldots ,d_{n}\) and let \(G= {\text {SL}}_{d_{1}} \times \cdots \times {\text {SL}}_{d_{n}}\). Geometrically, we ask: Given \((d_{1},\ldots ,d_{n})\), when is the geometric invariant theory quotient \(\mathbb {P}(V_{1}\otimes \cdots \otimes V_{n})/\!/G\) non-empty? This is equivalent to the quantum mechanical question of whether the multipart quantum system with Hilbert space \(V_{1}\otimes \cdots \otimes V_{n}\) has a locally maximally entangled state, i.e., a state such that the density matrix for each elementary subsystem is a multiple of the identity. We show that the answer to this question is yes if and only if \(R(d_{1},\cdots ,d_{n})\geqslant 0\) where

$$\begin{aligned} R(d_{1},\cdots ,d_{n}) = \prod _{i}d_{i} +\sum _{k=1}^{n} (-1)^{k}\sum _{1\leqslant i_{1}<\cdots <i_{k}\leqslant n} \left( \gcd (d_{i_{1}},\cdots ,d_{i_{k}}) \right) ^{2}. \end{aligned}$$

We also provide a simple recursive algorithm which determines the answer to the question, and we compute the dimension of the resulting quotient in the non-empty cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreev, E.M., Vinberg, E.B., Elashvili, A.G.: Orbits of highest dimension of semisimple linear Lie groups. Funkcional. Anal. i Priložen. 1(4), 3–7 (1967). English translation in Functional Anal. Appl. 1, 257–261 (1967)

  2. Arnaud, L., Cerf, N.J.: Exploring pure quantum states with maximally mixed reductions. Phys. Rev. A 87, 012319 (2013)

    Article  ADS  Google Scholar 

  3. Bryan, J., Leutheusser, S., Reichstein, Z., Van Raamsdonk, M.: Locally maximally entangled states of multipart quantum systems. arXiv:1801.03508

  4. Elashvili, A.G.: Stationary subalgebras of points of general position for irreducible linear Lie groups. Funkcional. Anal. i Priložen. 6(2), 65–78 (1972). English translation in Functional Anal. Appl. 6, 139–148 (1972)

  5. Facchi, P., Florio, G., Parisi, G., Pascazio, S.: Maximally multipartite entangled states. Phys. Rev. A 77(6), 060304 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  6. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimensional Determinants. Mathematics: Theory and Applications. Birkhäuser Boston, Inc., Boston (1994)

    Book  MATH  Google Scholar 

  7. Gour, G., Wallach, N.R.: Classification of multipartite entanglement of all finite dimensionality. Phys. Rev. Lett. 111, 060502 (2013)

    Article  ADS  Google Scholar 

  8. Goyeneche, D., Bielawski, J., Zyczkowski, K.: Multipartite entanglement in heterogeneous systems. Phys. Rev. A 94, 012346 (2016)

    Article  ADS  Google Scholar 

  9. Hoskins, V.: Geometric Invariant Theory and Symplectic Quotients. Lecture Notes (2012). http://userpage.fu-berlin.de/hoskins/GITnotes.pdf. Accessed May 2017

  10. Klyachko, A.A.: Coherent states, entanglement, and geometric invariant theory (2002). arXiv:quant-ph/0206012

  11. Klyachko, A.A.: Quantum marginal problem and representations of the symmetric group (2004). arXiv:quant-ph/0409113

  12. Klyachko, A.A.: Dynamical symmetry approach to entanglement. In: Physics and Theoretical Computer Science, Volume 7 of NATO Secur. Sci. Ser. D Inf. Commun. Secur., pp. 25–54. IOS, Amsterdam (2007). arXiv:0802.4008v1

  13. Li, J.-L., Qiao, C.-F.: Classification of the entangled states \(2\times M\times N\). Quantum Inf. Process. 12(1), 251–268 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Littelmann, P.: Koreguläre und äquidimensionale Darstellungen. J. Algebra 123(1), 193–222 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Miyake, A., Verstraete, F.: Multipartite entanglement in \(2\times 2\times n\) quantum systems. Phys. Rev. A 69, 012101 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  16. Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory, Third edition, Ergebnisse der Mathematik und ihrer Grenzgebiete (2), 34, Springer, Berlin (1994)

  17. Popov, V.L.: Criteria for the stability of the action of a semisimple group on the factorial of a manifold. Izv. Akad. Nauk SSSR Ser. Mat. 34, 523–531 (1970)

    MathSciNet  Google Scholar 

  18. Popov, V.L., Vinberg, E.B.: Invariant theory. In: Algebraic Geometry, IV, Encyclopaedia of Mathematical Sciences, 55, Springer, Berlin, pp. 123–284 (1994)

  19. Reid, M.: Graded Rings and Varieties in Projective Space. http://homepages.warwick.ac.uk/~masda/surf/more/grad.ps. Accessed May 2017

  20. Rosenlicht, M.: Some basic theorems on algebraic groups. Am. J. Math. 78, 401–443 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  21. Richardson Jr., R.W.: Principal orbit types for algebraic transformation spaces in characteristic zero. Invent. Math. 16, 6–14 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Sato, M., Kimura, T.: A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya Math. J. 65, 1–155 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  23. Scott, A.J.: Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions. Phys. Rev. A 69, 052330 (2004)

    Article  ADS  Google Scholar 

  24. Wallach, N.R.: Quantum computing and entanglement for mathematicians. In: Representation Theory and Complex Analysis, Lectures Given at the C.I.M.E. Summer School held in Venice, Italy, June 10–17, 2004, pp. 345–376, Lecture Notes in Mathematices, 1931. Springer, Berlin (2008)

  25. Walter, M.: Multipartite Quantum States and their Marginals. Ph.D. Thesis, ETH Zurich (2014). arXiv:1410.6820

  26. Wang, S., Lu, Y., Long, G.-L.: Entanglement classification of \(2\times 2 \times 2 \times d\) quantum systems via the ranks of the multiple coefficient matrices. Phys. Rev. A 87, 062305 (2013)

    Article  ADS  Google Scholar 

  27. Yu, C.-S., Zhou, L., Song, H.-S.: Genuine tripartite entanglement monotone of \((2\otimes 2\otimes n)\)-dimensional systems. Phys. Rev. A 77, 022313 (2008)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim Bryan.

Additional information

Communicated by David Pérez-García.

Bryan and Reichstein were partially supported by Grants from the National Science and Engineering Council of Canada (NSERC). Van Raamsdonk was partially supported by Grants from NSERC and the Simons Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bryan, J., Reichstein, Z. & Van Raamsdonk, M. Existence of Locally Maximally Entangled Quantum States via Geometric Invariant Theory. Ann. Henri Poincaré 19, 2491–2511 (2018). https://doi.org/10.1007/s00023-018-0682-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-018-0682-6

Navigation