Skip to main content
Log in

The KT-BRST Complex of a Degenerate Lagrangian System

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Quantization of a Lagrangian field system essentially depends on its degeneracy and implies its BRST extension defined by sets of non-trivial Noether and higher-stage Noether identities. However, one meets a problem how to select trivial and non-trivial higher-stage Noether identities. We show that, under certain conditions, one can associate to a degenerate Lagrangian L the KT-BRST complex of fields, antifields and ghosts whose boundary and coboundary operators provide all non-trivial Noether identities and gauge symmetries of L. In this case, L can be extended to a proper solution of the master equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnich G., Brandt F. and Henneaux M. (2000). Local BRST cohomology in gauge theories. Phys. Rep. 338: 439–569

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Bashkirov D., Giachetta G., Mangiarotti L. and Sardanashvily G. (2005). Noether’s second theorem in a general setting. Reducible gauge theories. J. Phys. A 38: 5329–5344

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Bashkirov D., Giachetta G., Mangiarotti L. and Sardanashvily G. (2005). Noether’s second theorem for BRST symmetries. J. Math. Phys. 46: 053517

    Article  MathSciNet  Google Scholar 

  4. Bashkirov D., Giachetta G., Mangiarotti L. and Sardanashvily G. (2005). The antifield Koszul– Tate complex of reducible Noether identities. J. Math. Phys. 46: 103513

    Article  MathSciNet  Google Scholar 

  5. Batalin I. and Vilkovisky G. (1984). Closure of the gauge algebra, generalized Lie algebra equations and Feynman rules. Nucleic Phys. B 234: 106–124

    Article  ADS  MathSciNet  Google Scholar 

  6. Fisch J. and Henneaux M. (1990). Homological perturbation theory and algebraic structure of the antifield-antibracket formalism for gauge theories. Commun. Math. Phys. 128: 627–640

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Fulp R., Lada T. and Stasheff J. (2003). Noether variational Theorem II and the BV formalism. Rend. Circ. Mat. Palermo 2(Suppl no 71): 115–126

    MathSciNet  Google Scholar 

  8. Giachetta G., Mangiarotti L. and Sardanashvily G. (2005). Lagrangian supersymmetries depending on derivatives. Global analysis and cohomology. Commun. Math. Phys. 259: 103–128

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Gomis J., Parí s J. and Samuel S. (1995). Antibracket, antifields and gauge theory quantization. Phys. Rep. 295: 1–145

    Article  ADS  Google Scholar 

  10. Mangiarotti L. and Sardanashvily G. (2000). Connections in Classical and Quantum Field Theory. World Scientific, Singapore

    MATH  Google Scholar 

  11. Sardanashvily G. (2007). Graded infinite order jet manifolds. Int. J. Geom. Methods Mod. Phys. 4: 1335–1362

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sardanashvily.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bashkirov, D., Giachetta, G., Mangiarotti, L. et al. The KT-BRST Complex of a Degenerate Lagrangian System. Lett Math Phys 83, 237–252 (2008). https://doi.org/10.1007/s11005-008-0226-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-008-0226-y

Mathematics Subject Classification (2000)

Keywords

Navigation