Skip to main content
Log in

Strongly Homotopy Lie Bialgebras and Lie Quasi-bialgebras

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Structures of Lie algebras, Lie coalgebras, Lie bialgebras and Lie quasibialgebras are presented as solutions of Maurer–Cartan equations on corresponding governing differential graded Lie algebras using the big bracket construction of Kosmann–Schwarzbach. This approach provides a definition of an L -(quasi)bialgebra (strongly homotopy Lie (quasi)bialgebra). We recover an L -algebra structure as a particular case of our construction. The formal geometry interpretation leads to a definition of an L (quasi)bialgebra structure on V as a differential operator Q on V, self-commuting with respect to the big bracket. Finally, we establish an L -version of a Manin (quasi) triple and get a correspondence theorem with L -(quasi)bialgebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akman, F., Ionescu, L.: Higher derived brackets and deformation theory I. Available at arXiv:math.QA/0504541

  2. Alexandrov M., Kontsevich M., Schwarz A. and Zaboronsky O. (1997). The geometry of the master equation and topological quantum field. Theory Int. J. Mod. Phys. A 12(7): 1405–1429. Available at arXiv:hep-th/9502010

    Article  MATH  ADS  Google Scholar 

  3. Bangoura, M.: Algèbre de Lie d’homotopie associés à une protobigèbre de Lie. Available at http://www.ictp.trieste.it/, no. IC/2003/126

  4. Batalin I.A. and Vilkovisky G.I. (1981). Gauge algebra and quantization. Phys. Lett. 102 B(1): 27–31

    ADS  Google Scholar 

  5. Chas, M., Sullivan, D.: Closed string operators in topology leading to Lie bialgebras and higher string algebra. The legacy of Niels Henrik Abel, pp. 771–784. Springer, Berlin. Available at arxiv:math.GT/0212358 (2004)

  6. Drinfeld V.G. (1990). Quasi-Hopf algebras. Leningrad Math. J. 1: 1419–1457

    Google Scholar 

  7. Etingof P. and Schiffmann O. (1998). Lectures on quantum groups. International Press, Boston

    MATH  Google Scholar 

  8. Eliashberg, Y., Givental, A., Hofer, H.: Introduction to symplectic field theory. GAFA 2000 (Tel Aviv, 1999) Geom. Funct. Anal. Special Volume, Part II, pp. 560–673 (2000)

  9. Fradkin E.S. and Vilkovisky G.A. (1975). Quantization of relativistic systems with constraints. Phys. Lett. 55 B(2): 224–226

    ADS  Google Scholar 

  10. Gan W.L. (2003). Koszul duality for dioperads. Math. Res. Lett. 10(1): 109–124. Available at arxiv:math/0201074

    MATH  Google Scholar 

  11. Kontsevich M. (2003). Deformation quantization of poisson manifolds. Lett. Math. Phys. 66(3): 157–216. Available at http://xxx.lanl.gov/abs/q-alg/9709040

    Article  MATH  Google Scholar 

  12. Kosmann-Schwarzbach, Y.: Jacobian quasi-bialgebras and quasi-Poisson Lie groups. Mathematical aspects of classical field theory (Seattle, WA), Contemp. Math. Am. Math. Soc. vol. 132, pp. 459–489 (1992)

  13. Kosmann-Schwarzbach Y. (1996). From Poisson algebras to Gerstenhaber algebras. Ann. Inst. Fourier (Grenoble) 46(5): 1243–1274

    MATH  Google Scholar 

  14. Kosmann-Schwarzbach Y. (2004). Derived brackets. Lett. Math. Phys. 69(1–3): 61–87. Available at arXiv:math/0312524

    Article  MATH  Google Scholar 

  15. Kostant B. and Sternberg Sh. (1987). Symplectic reduction, BRS cohomology and infinite-dimensional Clifford algebras. Ann. Phys. 176: 49–113

    Article  MATH  ADS  Google Scholar 

  16. Lada T. and Stasheff J. (1993). Introduction to SH Lie algebras for physicists. Int. J. Theor. Phys. 32(7): 1087–1103. Available at arXiv:hep-th/9209099v1

    Article  MATH  Google Scholar 

  17. Lecomte, P.B.A., Roger, C.: Modules et cohomologie des bigebres de Lie. C. R. Acad. Sci. Paris Sér. I Math. 310, 405–410 and 311, 893–894 (1990)

  18. Loday, J.-L.: Overview on Leibniz algebras, dialgebras and their homology. In: Cyclic cohomology and noncommutative geometry, (Waterloo, ON, 1995), pp. 91–102, Fields Inst. Commun., vol. 17, Am. Math. Soc. (1997)

  19. Markl, M., Shnider, S., Stasheff, J.: Operads in algebra, topology and physics. Am. Math. Soc. (2002)

  20. Markl, M., Voronov, A.: PROPped up graph cohomology. Available at arXiv:math/ 0307081

  21. Merkulov S. (2000). An L -algebra of an unobstructed deformation functor. Intern. Math. Res. Notices 3: 147–164. Available at arXiv:math.AG/9907031

    Article  Google Scholar 

  22. Merkulov S. (2006). PROP Profile of Poisson Geometry. Comm. Math. Phys. 262(1): 117–135 Available at arXiv:math.DG/0401034

    Article  MATH  ADS  Google Scholar 

  23. Oh Y.-G. and Park J.-S. (2005). Deformations of coisotropic manifolds and strong homotopy Lie algebroids. Invent. Math. 161(2): 287–360 Available at arXiv:math.SG/0305292

    Article  MATH  Google Scholar 

  24. Roger, C.: Algebres de Lie graduees et quantication, in Symplectic Geometry and Mathematical Physics. In: P. Donato, C. Duval, e.a. eds. (Birkhauser, Boston) pp. 374–421 (1991)

  25. Stasheff, J.D.: Constrained Hamiltonians: a homological approach. In: Proceedings of the Winter School, SRNI, 1987, and Suppl. Rendicotti Circ. Mat. Palermo 16, 239–252 (1987)

  26. Vallette, B.: A Koszul duality for props. to appear in Trans. A.M.S. Available at arXiv:math/0411542 (2004)

  27. Vaintrob A.Yu. (1997). Lie algebroids and homological vector fields. Russian Math. Surv. 52(2): 428–429

    Article  MATH  Google Scholar 

  28. Voronov Th. (2005). Higher derived brackets and homotopy algebras. J. Pure Appl. Algebra 202(1–3): 133–153. Available at arXiv:math.QA/0304038

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Kravchenko.

Additional information

This paper is dedicated to Jean-Louis Loday on the occasion of his 60th birthday with admiration and gratitude.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kravchenko, O. Strongly Homotopy Lie Bialgebras and Lie Quasi-bialgebras. Lett Math Phys 81, 19–40 (2007). https://doi.org/10.1007/s11005-007-0167-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-007-0167-x

Mathematics Subject Classification (2007)

Keywords

Navigation