Skip to main content
Log in

PROP Profile of Poisson Geometry

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is shown that some classical local geometries are of infinity origin, i.e. their smooth formal germs are (homotopy) representations of cofibrant (di) operads in spaces concentrated in degree zero. In particular, they admit natural infinity generalizations when one considers homotopy representations of the (di) operads in generic differential graded spaces. Poisson geometry provides us with a simplest manifestation of this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, J.F.: Infinite loop spaces. Princeton NJ: Princeton University Press, 1978

  2. Gan, W.L.: Koszul duality for dioperads. Math. Res. Lett. 10, 109–124 (2003)

    MATH  MathSciNet  Google Scholar 

  3. Getzler, E., Jones, J.D.S.: Operads, homotopy algebra, and iterated integrals for double loop spaces. http://arxiv.org/list/hep-th/9403055, 1994

  4. Ginzburg, V., Kapranov, M.: Koszul duality for operads. Duke Math. J. 76, 203–272 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hertling, C.: Frobenius manifolds and moduli spaces for singularities. Cambridge: Cambridge University Press, 2002

  6. Hertling, C., Manin, Yu.I.: Weak Frobenius manifolds. Intern. Math. Res. Notices 6, 277–286 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lyubashenko, V.: Private communication

  8. Kontsevich, M.: Deformation quantization of Poisson manifolds I. Lett. Math.Phys. 66, 157–216 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kontsevich, M.: Topics in algebra-deformation theory. Berkeley Lectures 1995 (Unpublished notes by A. Weinstein)

  10. Markl, M.: Distributive laws and Koszulness. Ann. Inst. Fourier, Grenoble 46, 307–323 (1996)

    MATH  MathSciNet  Google Scholar 

  11. Markl, M.: Homotopy algebras are homotopy algebras. http://arxiv.org/list/math.AT/9907138, 1999

  12. Markl, M., Shnider, S., Stasheff, J.D.: Operads in Algebra, Topology and Physics. Providence, RI: AMS, 2002

  13. Markl, M., Voronov, A.A.: PROPped up graph cohomology. http://arxiv.org/list/math.QA/ 0307081, 2003

  14. Merkulov, S.A.: Operads, deformation theory and F-manifolds. In: Frobenius manifolds, quantum cohomology, and singularities, eds. C. Hertling, M. Marcolli, Wiesbaden: Vieweg 2004

  15. Merkulov, S.A.: Nijenhuis infinity and contractable dg manifolds. http://arxiv.org/list/ math.AG/040324, 2004 to appear in Compositio Math

  16. Stasheff, J.D.: On the homotopy associativity of H-spaces, I II. Trans. Amer. Math. Soc. 108, 272–292 & 293–312 (1963)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.A. Merkulov.

Additional information

Communicated by A. Connes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merkulov, S. PROP Profile of Poisson Geometry. Commun. Math. Phys. 262, 117–135 (2006). https://doi.org/10.1007/s00220-005-1385-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1385-7

Keywords

Navigation