Skip to main content
Log in

Poisson Structure and Action-Angle Variables for the Camassa–Holm Equation

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Poisson brackets for the scattering data of the Camassa-Holm equation are computed. Consequently, the action-angle variables are expressed in terms of the scattering data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arkadiev V.A., Pogrebkov A.K., Polivanov M.K. (1988). Theor. Math. Phys 75:448

    Article  Google Scholar 

  2. Beals R., Sattinger D., Szmigielski J. (1998). Acoustic scattering and the extended Korteweg-de Vries hierarchy. Adv. Math. 140:190–206

    Article  MATH  MathSciNet  Google Scholar 

  3. Beals R., Sattinger D., Szmigielski J. (1999). Multi-peakons and a theorem of Stieltjes. Inv. Problems 15:L1-L4

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Bennewitz, C. (2004). On the spectral problem associated with the Camassa–Holm equation. J. Nonlinear Math. Phys. 11:422–434

    Article  MATH  MathSciNet  Google Scholar 

  5. Birkhoff G., Rota G.-C. (1969). Ordinary Differential Equations. Blaisdell Publishing Company, Waltham

    MATH  Google Scholar 

  6. Buslaev V.S., Faddeev L.D., Takhtajan L.A. (1986). Scattering theory for the Korteweg- De Vries (KdV) equation and its Hamiltonian interpretation. Physica D 18:255

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Camassa R., Holm D. (1993). An integrable shallow water equation with peaked solitons. Phys. Rev. Lett.71:1661–1664

    Article  PubMed  MATH  ADS  MathSciNet  Google Scholar 

  8. Casati P., Lorenzoni P., Ortenzi G., Pedroni M. (2005). On the local and nonlocal Camassa–Holm Hierarchies. J. Math. Phys. 46:042704

    Article  ADS  MathSciNet  Google Scholar 

  9. Constantin A. (1998). On the inverse spectral problem for the Camassa-Holm equation. J. Funct. Anal. 155:352–363

    Article  MATH  MathSciNet  Google Scholar 

  10. Constantin A. (2000). Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50:321–362

    MATH  MathSciNet  Google Scholar 

  11. Constantin A. (2001). On the scattering problem for the Camassa–Holm equation Proc. R. Soc. Lond. A457:953–970

    ADS  MathSciNet  Google Scholar 

  12. Constantin A., Escher J. (1998). Wave breaking for nonlinear nonlocal shallow water equations. Acta Mathematica 181: 229–243

    Article  MATH  MathSciNet  Google Scholar 

  13. Constantin A., Kolev B. (2002). On the geometric approach to the motion of inertial mechanical systems. J. Phys. A: Math. Gen. 35:R51–R79

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Constantin A., Kolev B. (2003). Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv. 78: 787–804

    Article  MATH  MathSciNet  Google Scholar 

  15. Constantin A., McKean H.P. (1999). A shallow water equation on the circle. Commun. Pure Appl. Math. 52:949–982

    Article  MathSciNet  Google Scholar 

  16. Constantin A., Strauss W. (2000). Stability of peakons. Commun. Pure Appl. Math. 53:603–610

    Article  MATH  MathSciNet  Google Scholar 

  17. Constantin A., Strauss W. (2002). Stability of the Camassa–Holm solitons. J. Nonlin. Sci. 12:415–422

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Constantin, A., Kappeler, T., Kolev, B., Topalov, P.: On geodesic exponential maps of the Virasoro group, Preprint No 13-2004, Institute of Mathematics, University of Zurich Zurich (2004)

  19. Faddeev L.D., Takhtajan L.A. (1985). Poisson structure for the KdV equation. Lett. Math. Phys. 10:183

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Faddeev L.D., Takhtajan L.A. (1987). Hamiltonian Methods in the Theory of Solitons. Springer, Berlin Heidelberg Newyork

    MATH  Google Scholar 

  21. Fisher M., Shiff J. (1999). The Camassa–Holm equation: conserved quantities and the initial value problem Phys. Lett. A 259:371–376

    Article  MathSciNet  MATH  Google Scholar 

  22. Fokas A., Fuchssteiner B. (1981). Symplectic structures, their Bäcklund transformation and hereditary symmetries. Physica D4:47–66

    ADS  MathSciNet  Google Scholar 

  23. Ivanov R.I. (2006). Extended Camassa–Holm hierarchy and conserved quantities. Zeitschrift für Naturforschung 61a: 199–205

    Google Scholar 

  24. Jackson J.D. (1999). Classical Electrodynamics. Wiley, New York

    MATH  Google Scholar 

  25. Johnson R.S. (2002). Camassa–Holm, Korteweg-de Vries and related models for water waves. J. Fluid. Mech. 457:63–82

    Article  ADS  Google Scholar 

  26. Johnson R.S. (2003). On solutions of the Camassa–Holm equation. Proc. Roy. Soc. Lond. A459:1687–1708

    ADS  Google Scholar 

  27. Kaup, D.J.: Evolution of the scattering data of the Camassa–Holm equation for general initial data. Stud. Appl. Math. (2006 in press)

  28. Lenells J. (2002). The scattering approach for the Camassa–Holm equation. J. Nonlin. Math. Phys. 9:389–393

    Article  MATH  MathSciNet  Google Scholar 

  29. Lenells J. (2005). Conservation laws of the Camassa–Holm equation. J. Phys. A: Math. Gen. 38:869–880

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. McKean H.P. (1998). Breakdown of a shallow water equation. Asian J. Math. 2:867–874

    MATH  MathSciNet  Google Scholar 

  31. Misiolek G. (1998). A shallow water equation as a geodesic flow on the Bott–Virasoro group. J. Geom. Phys. 24:203–20

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Penskoi A. (2005). Canonically conjugate variables for the periodic Camassa–Holm equation. Nonlinearity 18:415–421

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Reyes E. (2002). Geometric integrability of the Camassa–Holm equation. Lett. Math. Phys. 59:117–131

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Vaninsky K.L. (2005). Equations of Camassa–Holm type and Jacobi ellipsoidal coordinates. Comm. Pure Appl. Math. 58:1149–1187

    Article  MATH  MathSciNet  Google Scholar 

  35. Zakharov V.E., Faddeev L.D. (1971). Korteweg-de Vries equation is a completely integrable Hamiltonian system. Funkz. Anal. Priloz. 5:18–27 [Func. Anal. Appl. 5, 280–287 (1971)]

    Google Scholar 

  36. Zakharov V.E., Manakov S.V. (1974). Complete integrability of the nonlinear Schrodinger equation, Teor. Mat. Fiz. 19:332–343 [Theor. Math. Phys. 6, 68–73 (1974)]

    MATH  Google Scholar 

  37. Zakharov V.E., Manakov S.V., Novikov S.P., Pitaevskii L.P. (1984). Theory of Solitons: the Inverse Scattering Method. Plenum, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Constantin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Constantin, A., Ivanov, R. Poisson Structure and Action-Angle Variables for the Camassa–Holm Equation. Lett Math Phys 76, 93–108 (2006). https://doi.org/10.1007/s11005-006-0063-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-006-0063-9

Keywords

Mathematics Subject Classifications (2000)

Navigation