Skip to main content
Log in

Poisson structure and action–angle variables for the Hirota equation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this work, we employ the inverse scattering transform (IST) to study the action–angle variables for the Hirota equation. Based on variational principle, we demonstrate that an Euler–Lagrange equation is equivalent to the Hirota equation. By using the IST, several properties of scattering data for the equation are discussed, and we calculate their Poisson brackets successfully with the help of tensor product. Interestingly, we reveal that the action–angle variables can be constructed by the scattering data. Furthermore, the spectral parameter expressions of conservation laws for the equation are derived, related to the Hamiltonian formulation for the equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No data were used to support this study.

References

  1. Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, New Delhi (1981)

    Google Scholar 

  2. Newell, A.C.: Solitons in Mathematics and Physics. SIAM, New Delhi (1985)

    Google Scholar 

  3. Dickey, L.A.: Soliton Equations and Hamiltonian Systems. World Scientific, Singapore (1994)

    Google Scholar 

  4. Faddeev, L.D., Takhtajan, L.A.: Hamiltonian Methods in the Theory of Solitons. Springer, Berlin (1987)

    Google Scholar 

  5. Balaszak, M.: Multi-Hamiltonian Theory of Dynamical Systems. Springer, Berlin (1998)

    Google Scholar 

  6. Ablowitz, M.J.: Lectures on the inverse scattering transform. Stud. Appl. Math. 58(1), 1794 (1978)

    MathSciNet  Google Scholar 

  7. Manakov, S.V.: Complete integrability and stochastization of discrete dynamical systems. Sov. Phys. JETP 40(2), 269–274 (1975)

    MathSciNet  Google Scholar 

  8. Shabat, A., Zakharov, V.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34(1), 62 (1972)

    MathSciNet  Google Scholar 

  9. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Method for solving the Sine-Gordon equation. Phys. Rev. Lett. 30(25), 1262–1264 (1973)

    MathSciNet  Google Scholar 

  10. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19(19), 1095 (1967)

    Google Scholar 

  11. Babelon, O., Viallet, C.M.: Hamiltonian structures and lax equations. Phys. Lett. B 237(3–4), 411–416 (1990)

    MathSciNet  Google Scholar 

  12. Tu, G.Z.: The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. J. Math. Phys. 30(2), 330–338 (1989)

    MathSciNet  Google Scholar 

  13. Ma, W.X., Chen, M.: Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebras. J. Phys. A: Math. Gen. 39(34), 10787 (2006)

    MathSciNet  Google Scholar 

  14. Teitelboim, C.: Gravitation and Hamiltonian structure in two spacetime dimensions. Phys. Lett. B 126(1–2), 41–45 (1983)

    MathSciNet  Google Scholar 

  15. Ovsienko, V., Roger, C.: Looped cotangent Virasoro algebra and nonlinear integrable systems in dimension 2+1. Commun. Math. Phys. 273, 357–378 (2007)

    Google Scholar 

  16. Kaplansky, I.: The Virasoro algebra. Commun. Math. Phys. 86, 49–54 (1982)

    MathSciNet  Google Scholar 

  17. Goddard, P., Kent, A., Olive, D.: Unitary representations of the Virasoro and super-Virasoro algebras. Commun. Math. Phys. 103, 105–119 (1986)

    MathSciNet  Google Scholar 

  18. Goddard, P., Olive, D.: Kac-Moody and Virasoro algebras in relation to quantum physics. Int. J. Mod. Phys. A 1(02), 303–414 (1986)

    MathSciNet  Google Scholar 

  19. Schultz, C., Ablowitz, M.: Action-angle variables and trace formula for D-bar limit case of Davey–Stewartson I. Phys. Lett. A 135(8–9), 433–437 (1989)

    MathSciNet  Google Scholar 

  20. Kaup, D., Lakoba, T., Matsuno, Y.: Complete integrability of the Benjamin-Ono equation by means of action-angle variables. Phys. Lett. A 238(2–3), 123–133 (1998)

    MathSciNet  Google Scholar 

  21. Constantin, A., Ivanov, R.I.: Poisson structure and action-angle variables for the Camassa–Holm equation. Lett. Math. Phys. 76, 93–108 (2006)

    MathSciNet  Google Scholar 

  22. Christov, O., Hakkaev, S.: On the inverse scattering approach and action-angle variables for the Dullin–Gottwald–Holm equation. Physica D 238(1), 9–19 (2009)

    MathSciNet  Google Scholar 

  23. Bauhardt, W., Pöppe, C.: The Zakharov–Shabat inverse spectral problem for operators. J. Math. Phys. 34(7), 3073–3086 (1993)

    MathSciNet  Google Scholar 

  24. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53(4), 249–315 (1974)

    MathSciNet  Google Scholar 

  25. Boiti, M., Gerdjikov, V., Pempinelli, F.: The WKIS system: Bäcklund transformations, generalized Fourier transforms and all that. Prog. Theor. Phys. 75(5), 1111–1141 (1986)

    Google Scholar 

  26. Gerdjikov, V., Yanovski, A.: Completeness of the eigenfunctions for the Caudrey–Beals–Coifman system. J. Math. Phys. 35(7), 3687–3725 (1994)

    MathSciNet  Google Scholar 

  27. Constantin, A., Gerdjikov, V.S., Ivanov, R.I.: Generalized Fourier transform for the Camassa–Holm hierarchy. Inv. Problems 23(4), 1565 (2007)

    MathSciNet  Google Scholar 

  28. Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14(7), 805–809 (1973)

    MathSciNet  Google Scholar 

  29. Calogero, F., Eckhaus, W.: Nonlinear evolution equations, rescalings, model PDEs and their integrability: I. Inv. Problems 3(2), 229 (1987)

    MathSciNet  Google Scholar 

  30. Karney, C.F., Sen, A., Chu, F.Y.: Nonlinear evolution of lower hybrid waves. Phys. Fluids 22(5), 940–952 (1979)

    Google Scholar 

  31. Hayashi, N., Ozawa, T.: On the derivative nonlinear Schrödinger equation. Physica D 55(1–2), 14–36 (1992)

    MathSciNet  Google Scholar 

  32. Faddeev, L., Volkov, A.Y.: Hirota equation as an example of an integrable symplectic map. Lett. Math. Phys. 32, 125–135 (1994)

    MathSciNet  Google Scholar 

  33. Cao, C., Zhang, G.: A finite genus solution of the Hirota equation via integrable symplectic maps. J. Phys. A: Math. Theor. 45(9), 095203 (2012)

    MathSciNet  Google Scholar 

  34. Ankiewicz, A., Soto-Crespo, J., Akhmediev, N.: Rogue waves and rational solutions of the Hirota equation. Phys. Rev. E 81(4), 046602 (2010)

    MathSciNet  Google Scholar 

  35. Tao, Y.S., He, J.S.: Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation. Phys. Rev. E 85(2), 026601 (2012)

    Google Scholar 

  36. Zhang, G.Q., Chen, S.Y., Yan, Z.Y.: Focusing and defocusing Hirota equations with non-zero boundary conditions: inverse scattering transforms and soliton solutions. Commun. Nonlinear Sci. Numer. Simul. 80, 104927 (2020)

    MathSciNet  Google Scholar 

  37. Zhang, X.F., Tian, S.F., Yang, J.J.: Inverse scattering transform and soliton solutions for the Hirota equation with N distinct arbitrary order poles. Adv. Appl. Math. Mech. 14(4), 893–913 (2022)

    MathSciNet  Google Scholar 

  38. Cen, J., Correa, F., Fring, A.: Integrable nonlocal Hirota equations, J. Math. Phys. 60(8) (2019)

  39. Li, Y., Tian, S. F.: Inverse scattering transform and soliton solutions of an integrable nonlocal Hirota equation, Comm. Pure. Appl. Math. 21(1) (2022)

  40. Peng, W.Q., Chen, Y.: N-double poles solutions for nonlocal Hirota equation with nonzero boundary conditions using Riemann–Hilbert method and PINN algorithm. Physica D 435, 133274 (2022)

    MathSciNet  Google Scholar 

  41. Zuo, D.W., Zhang, G.F.: Exact solutions of the nonlocal Hirota equations. Appl. Math. Lett. 93, 66–71 (2019)

    MathSciNet  Google Scholar 

  42. Xia, Y.R., Yao, R.X., Xin, X.P.: Darboux transformation and soliton solutions of a nonlocal Hirota equation. Chin. Phys. B 31(2), 020401 (2022)

    Google Scholar 

  43. Magri, F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19(5), 1156–1162 (1978)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11975306 and 12371255, the Natural Science Foundation of Jiangsu Province under Grant No. BK20181351, the Six Talent Peaks Project in Jiangsu Province under Grant No. JY-059, and the 333 Project in Jiangsu Province.

Author information

Authors and Affiliations

Authors

Contributions

Each of the authors contributed to each part of this study equally. All authors read and proved the final vision of the manuscript. All authors have the same contribution.

Corresponding author

Correspondence to Shou-Fu Tian.

Ethics declarations

Conflict of interest

This work does not have any conflicts of interest.

Ethical approval and consent to participate

Not applicable.

Consent for publication

All authors read and approved the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported in part by the National Natural Science Foundation of China under Grant Nos. 11975306 and 12371255.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Tian, SF. Poisson structure and action–angle variables for the Hirota equation. Z. Angew. Math. Phys. 74, 236 (2023). https://doi.org/10.1007/s00033-023-02129-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02129-z

Keywords

Mathematics Subject Classification

Navigation