Advertisement

Mathematical Geosciences

, Volume 49, Issue 5, pp 635–655 | Cite as

A Surface Model for Aeolian Dune Topography

  • Travis Swanson
  • David Mohrig
  • Gary Kocurek
  • Man Liang
Article

Abstract

A surface model for aeolian bedform topography is adapted from a surface model of subaqueous bedform topography. The aeolian bedform surface model is developed using a uniform grid with a cell-centered finite volume approximation of the sediment continuity equation. The resulting modeling framework approximates the dynamic motions of aeolian bedform topography driven by bedform field boundary conditions. The numerical model is applied to simulate bedforms growing from unimodal and bimodal transport regimes from both a fixed elevation (sediment source area) and within a domain with fully periodic boundary conditions. The rates at which modeled aeolian bedforms grow and morphologically mature are sensitive to the chosen boundary conditions. Video files of model simulations and source code for the presented aeolian bedform surface modeling framework are available in supplemental materials. The aeolian bedform surface model code is malleable and readily modified for exploratory study of dynamic bedform topography that inherits morphological traits from aeolian bedform field boundary conditions.

Keywords

Aeolian Dune Bedform Exploratory numerical model 

Notes

Acknowledgments

Caroline Hern generously provided continuous feedback and conceptual steering for this project. We thank Matthew Wolinsky and Mauricio Perillo for helpful guidance and suggestions concerning code development. The authors are grateful for the thoughts and comments provided by Roussos Dimitrakopoulos and Brad Murray during the revision of this manuscript. Funding for this work was provided by Shell International Exploration & Production Inc. This work does not reflect the views of Shell International Exploration & Production Inc.

Supplementary material

11004_2016_9654_MOESM1_ESM.mpg (220.8 mb)
Supplementary material 1 (mpg 226093 KB)
11004_2016_9654_MOESM2_ESM.mpg (84.6 mb)
Supplementary material 2 (mpg 86598 KB)
11004_2016_9654_MOESM3_ESM.mpg (70.6 mb)
Supplementary material 3 (mpg 72309 KB)
11004_2016_9654_MOESM4_ESM.mpg (149.7 mb)
Supplementary material 4 (mpg 153338 KB)
11004_2016_9654_MOESM5_ESM.txt (33 kb)
Supplementary material 5 (txt 33 KB)
11004_2016_9654_MOESM6_ESM.docx (12 kb)
Supplementary material 6 (docx 12 KB)

References

  1. Baas JH (1994) A flume study on the development and equilibrium morphology of current ripples in very fine sand. Sedimentology 41(2):185–209. doi: 10.1111/j.1365-3091.1994.tb01400.x CrossRefGoogle Scholar
  2. Bagnold RA (1941) The physics of blown sand and desert dunes. Methuen, LondonGoogle Scholar
  3. Barabási A-L (1995) Fractal concepts in surface growth. Cambridge University Press, Cambridge. doi: 10.1017/CBO9780511599798 Google Scholar
  4. Diniega S (2010) Modeling aeolian dune and dune field evolution. Dissertation, The University of ArizonaGoogle Scholar
  5. du Pont SC, Narteau C, Gao X (2014) Two modes for dune orientation. Geology 42(9):743–746. doi: 10.1130/G35657.1 Google Scholar
  6. Eastwood EN, Kocurek G, Mohrig D, Swanson T (2012) Methodology for reconstructing wind direction, wind speed and duration of wind events from aeolian cross-strata. J Geophys Res Earth 117(F3):F03035. doi: 10.1029/2012jf002368 Google Scholar
  7. Ewing RC, Kocurek G, Lake LW (2006) Pattern analysis of dune-field parameters. Earth Surf Process Landf 31(9):1176–1191. doi: 10.1002/esp.1312 CrossRefGoogle Scholar
  8. Exner FM (1925) Über die Wechselwirkung zwischen Wasser und Geschiebe in Flüssen (in German). Sitz Acad Wiss Wien Math Naturwiss Abt 2a 134:165–203Google Scholar
  9. Hersen P (2004) On the crescentic shape of barchan dunes. Eu Phys J B Condens Matter Complex Syst 37(4):507–514. doi: 10.1140/epjb/e2004-00087-y CrossRefGoogle Scholar
  10. Jackson P, Hunt J (1975) Turbulent wind flow over a low hill. Q J R Meteorol Soc 101(430):929–955. doi: 10.1002/qj.49710143015 CrossRefGoogle Scholar
  11. Jerolmack DJ, Ewing RC, Falcini F, Martin RL, Masteller C, Phillips C, Reitz MD, Buynevich I (2012) Internal boundary layer model for the evolution of desert dune fields. Nat Geosci 5(3):206–209. doi: 10.1038/ngeo1381 CrossRefGoogle Scholar
  12. Jerolmack DJ, Mohrig D (2005) A unified model for subaqueous bed form dynamics. Water Resour Res 41(12):W12421. doi: 10.1029/2005WR004329 CrossRefGoogle Scholar
  13. Khosronejad A, Sotiropoulos F (2014) Numerical simulation of sand waves in a turbulent open channel flow. J Fluid Mech 753:150–216. doi: 10.1017/jfm.2014.335 CrossRefGoogle Scholar
  14. Kocurek G, Ewing RC, Mohrig D (2010) How do bedform patterns arise? New views on the role of bedform interactions within a set of boundary conditions. Earth Surf Process Landf 35(1):51–63. doi: 10.1002/esp.1913 CrossRefGoogle Scholar
  15. Kocurek G, Townsley M, Yeh E, Havholm K, Sweet M (1992) Dune and dune-field development on Padre Island, Texas, with implications for interdune deposition and water-table-controlled accumulation. J Sediment Res 62(4):Google Scholar
  16. Kroy K, Sauermann G, Herrmann HJ (2002) Minimal model for aeolian sand dunes. Phys Rev E 66(3):031302. doi: 10.1103/physreve.66.031302 CrossRefGoogle Scholar
  17. Lancaster N, Nickling W, Neuman CM, Wyatt V (1996) Sediment flux and airflow on the stoss slope of a barchan dune. Geomorphology 17(1):55–62. doi: 10.1016/0169-555X(95)00095-M CrossRefGoogle Scholar
  18. Meyer-Peter E, Müller R (1948) Formulas for bed-load transport. Proceedings of the 2nd meeting. IAHR, Stockholm, pp 39–64Google Scholar
  19. Murray AB, Thieler ER (2004) A new hypothesis and exploratory model for the formation of large-scale inner-shelf sediment sorting and “rippled scour depressions”. Cont Shelf Res 24(3):295–315. doi: 10.1016/j.csr.2003.11.001 CrossRefGoogle Scholar
  20. Murray AB (2007) Reducing model complexity for explanation and prediction. Geomorphology 90(3):178–191. doi: 10.1016/j.geomorph.2006.10.020 CrossRefGoogle Scholar
  21. Ping L, Narteau C, Dong Z, Zhang Z, Courrech du Pont S (2014) Emergence of oblique dunes in a landscape-scale experiment. Nat Geosci 7(2):99–103. doi: 10.1038/ngeo2047 CrossRefGoogle Scholar
  22. Press WH, Teukolsky S, Vetterling W, Flannery B (1988) Numerical recipes in C. Cambridge University Press, CambridgeGoogle Scholar
  23. Rubin DM, Hunter RE (1987) Bedform alignment in directionally varying flows. Science 237(4812):276–278. doi: 10.1126/science.237.4812.276 CrossRefGoogle Scholar
  24. Werner BT (1995) Eolian dunes: computer simulations and attractor interpretation. Geology 23(12):1107–1110. doi: 10.1130/0091-7613(1995)023<1107:EDCSAA>2.3.CO;2 CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2016

Authors and Affiliations

  • Travis Swanson
    • 1
  • David Mohrig
    • 1
  • Gary Kocurek
    • 1
  • Man Liang
    • 1
  1. 1.Department of Geosciences, Jackson School of GeosciencesThe University of Texas at AustinAustinUSA

Personalised recommendations