Skip to main content
Log in

Influence of Low-Temperature Annealing on the Structure and Chemical Composition of Cu2ZnSnS4 Films Deposed on Flexible Polyimide Substrates

  • Published:
Materials Science Aims and scope

The Cu2ZnSnS4 (CZTS) films are deposited onto flexible polyimide substrates by spraying inks containing nanoparticles with subsequent low-temperature annealing at 200°C for 10–120 min in an argon atmosphere. By the methods of X-ray diffractometry and Raman spectroscopy, it can be shown that the nanoparticles and films contain the kesterite phase with small amounts of inclusions of the CuxS and CuxSnySz phases. Increasing the duration of growth of nanoparticles and time of annealing of the films, we improve the crystalline quality of kesterite, i.e., of their main phase. It is shown that the obtained CZTS films are nanostructured and do not suffer cracking even after 50 events of bending in an area of 10 × 10 μm. By applying the method of energy-dispersive X-ray analysis to determine the chemical composition of the samples, we show that the nanoparticles and CZTS films contain excess amounts of copper and sulfur but are depleted of zinc. By analyzing the optical characteristics of the layers, we conclude that the width of forbidden zone for synthesized materials is Eg = (1.4–1.5) ± 0.2 eV, which coincides with the available data. The obtained CZTS films are promising for applications as absorbing layers of solar cells of the third generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. S. Giraldo, Z. Jehl, M. Placidi, V. Izquierdo-Roca, A. Perez-Rodriguez, and E. Saucedo, “Progress and perspectives of thin film kesterite photovoltaic technology: a critical review,” Adv. Mat., 31, 1806692 (2019).

    Article  Google Scholar 

  2. K. Pal, P. Singh, A. Bhaduri, and K. B. Thapa, “Current challenges and future prospects for a highly efficient (> 20%) kesterite CZTS solar cell: a review,” Sol. Energy Mat. Sol. Cells, 196, 138–156 (2019).

    Article  CAS  Google Scholar 

  3. D. S. Dhawale, A. Ali, and A. C. Lokhande, “Impact of various dopant elements on the properties of kesterite compounds for solar cell applications: a status review,” Sustainable Energy Fuels, 3, 1365–1383 (2019).

    Article  CAS  Google Scholar 

  4. M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, and Q. Qiao, “Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS-Se solar cells,” Energy Environ. Sci., 8, 3134–3159 (2015).

    Article  CAS  Google Scholar 

  5. L. Yin, G. Cheng, Y. Feng, Z. Li, C. Yang, and X. Xiao, “Limitation factors for the performance of kesterite Cu2ZnSnS4 thin film solar cells studied by defect characterization,” RSC Adv., 5, 40369–40374 (2015).

    Article  CAS  Google Scholar 

  6. P. K. Nayak, S. Mahesh, H. J. Snaith, and D. Cahen, “Photovoltaic solar cell technologies: analysing the state of the art,” Nat. Rev. Mater., 4, 269–285 (2019).

    Article  CAS  Google Scholar 

  7. T. D. Lee and A. U. Ebong, “A review of thin film solar cell technologies and challenges,” Renew. Sustain. Energy Rev., 70, 1286–1297 (2017).

    Article  CAS  Google Scholar 

  8. J. Xua, Z. Cao, Y. Yang, and Z. Xie, “Fabrication of Cu2ZnSnS4 thin films on flexible polyimide substrates by sputtering and post-sulfurization,” J. Renew. Sustain. Energy, 6, 053110 (2014).

  9. V. Kumar and V. G. Masih, “Fabrication and characterization of screen-printed Cu2ZnSnS4 films for photovoltaic applications,” J. Electron. Mater., 48, 2195–2199 (2019).

    Article  CAS  Google Scholar 

  10. T. Todorov, M. Kita, J. Carda, and P. Escribano, “Cu2ZnSnS4 films deposited by a soft-chemistry method,” Thin Solid Films, 517, 2541–2544 (2009).

    Article  CAS  Google Scholar 

  11. D. Tang, Q. Wang, F. Liu, L. Zhao, Z. Han, K. Sun, Y. Lai, J. Li, and Y. Liu, “An alternative route towards low-cost Cu2ZnSnS4 thin film solar cells,” Surf. Coat. Technol., 232, 53–59 (2013).

    Article  CAS  Google Scholar 

  12. M. Ibañez, R. Hasler, A. Genc, Y. Liu, B. Kuster, M. Schuster, O. Dobrozhan, D. Cadavid, J. Arbiol, A. Cabot, and M. V. Kovalenko, “Ligand-mediated band engineering in bottom-up assembled SnTe nanocomposites for thermoelectric energy conversion,” J. Am. Chem. Soc., 141, 8025–8029 (2019).

    Article  Google Scholar 

  13. A. Dumasiya and N. M. Shah, “Solvothermal synthesis and characterization of CZTS nanocrystals,” AIP Conf. Proc., 1837, 040067 (2017).

  14. R. Ahmad, K. S. Nicholson, Q. Nawaz, W. Peukert, and M. Distaso, “Correlation between product purity and process parameters for the synthesis of Cu2ZnSnS4 nanoparticles using microwave irradiation,” J. Nanopart. Res., 19, 238 (2017).

    Article  Google Scholar 

  15. P. R. Ghediya, T. K. Chaudhuri, and D. Vankhade, “Electrical conduction of CZTS films in dark and under light from molecular solution ink,” J. Alloys Comp., 685, 498–506 (2016).

    Article  CAS  Google Scholar 

  16. T. K. Chaudhuri, M. H. Patel, D. Tiwari, and P. R. Ghedia, “Kesterite Cu2ZnSnS4 thin films by drop-on-demand inkjet printing from molecular ink,” J. Alloys Comp., 747, 31–37 (2018).

    Article  CAS  Google Scholar 

  17. H. Dong, T. Schnabel, E. Ahlswede, and C. Feldmann, “Polyol-mediated synthesis of Cu2ZnSn(S, Se)4 kesterite nanoparticles and their use in thin-film solar cells,” Solid State Sci., 29, 52–57 (2014).

    Article  CAS  Google Scholar 

  18. O. Dobrozhan, A. Opanasyuk, M. Kolesnyk, M. Demydenko, and H. Cheong, “Substructural investigations, Raman, and FTIR spectroscopies of nanocrystalline ZnO films deposited by pulsed spray pyrolysis,” Phys. Status Solidi A, 212, 2915–2921 (2015).

    Article  CAS  Google Scholar 

  19. O. Dobrozhan, D. Kurbatov, A. Opanasyuk, H. Cheong, and A. Cabot, “Influence of substrate temperature on the structural and optical properties of crystalline ZnO films obtained by pulsed spray pyrolysis,” Surf. Interface Anal., 47, 601–606 (2015).

    Article  CAS  Google Scholar 

  20. O. Dobrozhan, O. Diachenko, M. Kolesnyk, A. Stepanenko, S. Vorobiov, P. Baláž, S. Plotnikov, and A. Opanasyuk, “Morphological, structural and optical properties of Mg-doped ZnO nanocrystals synthesized using polyol process,” Mat. Sci. Semicond. Proc., 102, 104595 (2019).

  21. V. Kosyak, A. Voznyi, P. Onufrijevs, L. Grase, J. Vecstaudža, A. Opanasyuk, A. Medvids, and G. Mezinskis, “Laser induced SnS2-SnS phase transition and surface modification in SnS2 thin films,” J. Alloys Comp., 688, 130–139 (2016).

    Article  Google Scholar 

  22. H. Shanak, K. H. Ehses, W. Götz, P. Leibenguth, and R. Pelster, “X-ray diffraction investigations of á-polyamide 6 films: orientation and structural changes upon uni- and biaxial drawing,” J. Mater. Sci., 44, 655–663 (2009).

    Article  CAS  Google Scholar 

  23. N. Ataollahi, C. Malerba, E. Cappelletto, R. Ciancio, R. Edla, R. Di Maggio, and P. Scardi, “Control of composition and grain growth in Cu2ZnSnS4 thin films from nanoparticle inks,” Thin Solid Films, 674, 12–21 (2019).

    Article  CAS  Google Scholar 

  24. Ye. Havryliuk, M. Ya. Valakh, V. Dzhagan, O. Greshchuk, V. Yukhymchuk, A. Raevskaya, O. Stroyuk, O. Selyshchev, N. Gaponik, and D. R. T. Zahn, “Raman characterization of Cu2ZnSnS4 nanocrystals: phonon confinement effect and formation of CuxS phases,” RSC Adv., 8, 30736–30746 (2018).

  25. M. Y. Valakh, O. F. Kolomys, S. S. Ponomaryov, V. O. Yukhymchuk, I. S. Babichuk, V. Izquierdo-Roca, E. Saucedo, A. Perez-Rodriguez, J. R. Morante, S. Schorr, and I. V. Bodnar, “Raman scattering and disorder effect in Cu2ZnSnS4,” Phys. Status Solidi, 7, 258–261 (2013).

    CAS  Google Scholar 

  26. M. Dimitrievska, F. Boero, A. P. Litvinchuk, S. Delsante, G. Borzone, A. Perez-Rodriguez, and V. Izquierdo-Roca, “Structural polymorphism in “kesterite” Cu2ZnSnS4: Raman spectroscopy and first-principles calculations analysis,” Inorg. Chem., 6, 3467–3474 (2017).

    Article  Google Scholar 

  27. M. Dimitrievska, A. Fairbrother, X. Fontané, T. Jawhari, V. Izquierdo-Roca, E. Saucedo, and A. Pérez-Rodríguez, “Multiwavelength excitation Raman scattering study of polycrystalline kesterite Cu2ZnSnS4 thin films,” Appl. Phys. Lett., 104, 021901 (2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kakherskyi.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 57, No. 4, pp. 125–133, July–August, 2021.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakherskyi, S.I., Dobrozhan, O.A., Pshenychnyi, R.M. et al. Influence of Low-Temperature Annealing on the Structure and Chemical Composition of Cu2ZnSnS4 Films Deposed on Flexible Polyimide Substrates. Mater Sci 57, 572–581 (2022). https://doi.org/10.1007/s11003-022-00580-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-022-00580-3

Keywords

Navigation