Skip to main content
Log in

Effects of annealing temperature on Cu2ZnSnS4 (CZTS) films formed by electrospray technique

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Cu2ZnSnS4 (CZTS) films were formed by an electrospray method, and the effects of annealing temperature on the properties of CZTS films were investigated. All CZTS films exhibited a kesterite structure with a preferred orientation of (112), (220) and (312), and did not show non-CZTS phases according to the annealing temperature. The grain size of CZTS films increased substantially in the temperature range of 300-450 °C, and the optical band-gap (E g ) of the films with increasing temperature decreased from 1.71 eV to 1.42 eV. Consequently, single-phased CZTS films were acquired without annealing process by electrospray method, and the annealing process improved the optical and structural properties of CZTS films. These results demonstrated that the CZTS films developed in this study has promising potential for the formation of high quality CZTS thin films in thin-film solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Wang, Y. Huang, A. Y. S. Lee, C. F. Wang and H. Gong, J. Alloys Compd., 539, 237 (2012).

    Article  CAS  Google Scholar 

  2. H. T. Kim, D. Kim and C. Park, Mol. Cryst. Liq. Cryst., 546, 155 (2012).

    Article  Google Scholar 

  3. S. Thiruvenkadam, D. Jovina and A. L. Rajesh, Sol. Energy, 106, 166 (2014).

    Article  CAS  Google Scholar 

  4. E. M. Mkawi, K. Ibrahim, M. K. M. Ali and A. S. Mohamed, Int. J. Electrochem. Sci., 8, 359 (2013).

    CAS  Google Scholar 

  5. V. Kheraj, K. K. Patel, S. J. Patel and D. V. Shah, J. Cryst. Growth, 362, 174 (2013).

    Article  CAS  Google Scholar 

  6. S. M. Pawar, B. S. Pawar, A. V. Moholkar, D. S. Choi, J. H. Yun and J. H. Moon, Electrochim. Acta, 55, 4057 (2010).

    Article  CAS  Google Scholar 

  7. R. R. King, A. Boca, W. Hong, X.-Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian and N. H. Karam, European Photovoltaic Sol. Energy Conference and Exhibition, 24, 21 (2009).

    Google Scholar 

  8. K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi and S. Guha, Appl. Phys. Lett., 97, 143508 (2010).

    Article  Google Scholar 

  9. C. P. P. Bjorkman, J. Scragg, H. Flammerrsberger, T. Kubart and M. Endoff, Sol. Energy Mater. Sol. Cells, 98, 110 (2012).

    Article  Google Scholar 

  10. N. Kamoun, H. Bouzouita and B. Rezig, Thin Solid Films, 515, 5949 (2007).

    Article  CAS  Google Scholar 

  11. K. Tanaka, N. Moritake, M. Oonuki and H. Uchiki, Jpn. J. Appl. Phys., 47, 598 (2008).

    Article  CAS  Google Scholar 

  12. B. L. Guo, Y. H. Chen, X. J. Liu, W. C. Liu and A. D. Li, AIP Advances, 4, 097115 (2014).

    Article  Google Scholar 

  13. K. Woo, Y. Kim and J. Moon, Energy Environ. Sci., 5, 5340 (2012).

    Article  CAS  Google Scholar 

  14. M. L. Jiang, F. Lan, X. Z. Yan and G. Y. Li, Phys. Status Solidi RRL, 8, 3 (2014).

    Article  Google Scholar 

  15. H. X. Wang, International J. Photoenergy, 10, 801292 (2011).

    Google Scholar 

  16. K. Kim, I. Kim, Y. Oh, D. Lee, K. Woo, S. Jeong and J. Moon, The Royal Soc. Chem., 16, 4323 (2014).

    CAS  Google Scholar 

  17. D. Song, W. Kim, K. Mahmood, H. W. Kang, S. B. Park, S. Park and J. Han, J. Alloys Compd., 567, 89 (2013).

    Article  CAS  Google Scholar 

  18. A. Jaworek, J. Mater. Sci., 42, 266 (2007).

    Article  CAS  Google Scholar 

  19. G. J. V. Berkel, S. A. McLuckey and G. L. Glish, Anal. Chem., 64, 1586 (1992).

    Article  Google Scholar 

  20. S. J. Gaskell, J. Mass Spectrom., 32, 677 (1997).

    Article  CAS  Google Scholar 

  21. N. M. Shinde, R. J. Deokate and C. D. Lokhande, J. Anal. Appl. Pyrolysis, 100, 12 (2013).

    Article  CAS  Google Scholar 

  22. A. Emrani, P. Vasekar and C. R. Westgate, Sol. Energy, 98, 335 (2013).

    Article  CAS  Google Scholar 

  23. S. Huang, W. J. Luo and Z. G. Zou, J. Phys. D: Appl. Phys., 46, 235108 (2013).

    Article  Google Scholar 

  24. P. A. Fernandes, P. M. P. Salomé and A. F. da Cunha, J. Alloys. Compd., 509, 7600 (2011).

    Article  CAS  Google Scholar 

  25. H. S. Yoo, J. H. Kim and L. X. Zhang, Curr. Appl. Phys., 12, 1052 (2011).

    Article  Google Scholar 

  26. A. Khare, A. Wliis, L. M. Ammerman, D. J. Norris and E. S. Aydil, Chem. Compd., 47, 11721 (2011).

    Article  CAS  Google Scholar 

  27. C. D. Kim, H. T. Kim, B. K. Min and C. Park, Mol. Cryst. Liq. Cryst., 602, 151 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinho Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Park, C. Effects of annealing temperature on Cu2ZnSnS4 (CZTS) films formed by electrospray technique. Korean J. Chem. Eng. 34, 1187–1191 (2017). https://doi.org/10.1007/s11814-017-0011-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0011-7

Keywords

Navigation