Skip to main content
Log in

Modeling of Electric-Discharge Processes in the Course of Treatment of Titanium in Hydrocarbon Liquids

  • Published:
Materials Science Aims and scope

We propose a physical model of electric-discharge processes running in a layer of titanium powder placed in kerosene and ethyl alcohol. We analyze the dependences of the distribution of plasma formations in the volume of discharge chamber observed as the number of discharges increases. We also confirm the possibility of synthesis of submicron and superdispersed particles in the course of highvoltage electric-discharge treatment of titanium powders in hydrocarbon liquids (alcohol or kerosene) as a result the electrothermal influence of discharge plasmas on powder particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. O. N. Sizonenko, E. G. Grigoryev, N. S. Pristash, A. D. Zaichenko, A. S. Torpakov, Ye. V. Lypian, V. A. Tregub, A. G. Zholnin, A. V. Yudin, and A. A. Kovalenko, “Plasma methods of obtainment of multifunctional composite materials dispersion-hardened by nanoparticles,” High Temper. Mater. Processes, 36, No. 9, 891–896 (2017).

    Article  CAS  Google Scholar 

  2. O. Sizonenko, S. Prokhorenko, A. Torpakov, D. Zak, Y. Lypian, R. Wojnarowska-Nowak, J. Polit, and E. Sheregii, “The metalmatrix composites reinforced by the fullerenes,” AIP Adv., 8, No. 8, 085317 (2018).

    Article  Google Scholar 

  3. O. N. Sizonenko, G. A. Baglyuk, A. I. Raichenko, E. I. Taftai, E. V. Lipyan, A. D. Zaichenko, A. S. Torpakov, and E. V. Guseva, “Variation in the particle size of Fe–Ti–B4C powders induced by high-voltage electric discharge,” Powder Metallurgy Metal Ceram., 51, No. 3/4, 129–136 (2012).

    Article  CAS  Google Scholar 

  4. O. N. Sizonenko, G. A. Baglyuk, A. I. Raichenko, G. P. Bogatyreva, N. A. Oleinik, E. I. Taftai, E. V. Lipyan, and A. S. Torpakov, “Effect of high-voltage discharge on the particle size of hard alloy powders,” Powder Metallurgy Met. Ceram, 49, No. 11/12, 630–636 (2011).

    Article  CAS  Google Scholar 

  5. O. M. Syzonenko, P. I. Loboda, A. D. Zaichenko, Ye. V. Solodkyi, A. S. Torpakov, M. S. Prystash, and V. O. Trehub, “The influence of high-voltage electric discharge on dispersion and structure of B4C powder,” J. Superhard Mater., 39, No. 4, 243–250 (2017).

    Article  Google Scholar 

  6. K. K. Namitokov, Electro-Erosion Phenomena [in Russian], Énergiya, Moscow (1978).

    Google Scholar 

  7. A. A. Shcherba, S. N. Zakharchenko, K. G. Lopat’ko, N. I. Shevchenko, and N. A. Lomko, “Discharge-pulse systems of the production of nanocolloid solutions of biologically active metals by the method of volume electric-spark dispersion,” Pratsi Inst. Elektrodynamiky NASU, No. 26, 152–160 (2010).

  8. E. V. Ageev, B. A. Semenikhin, and R. A. Latypov, “Investigation of the influence of electric parameters of an installation on the process of powder formation in the course of electroerosion dispersion of the wastes of solid alloy,” Izv. Samar. Nauch. Tsentr Ross. Akad. Nauk, 11, No. 5 (2), 238–240 (2009).

  9. G. A. Meerson, G. A. Kassir, and E. M. Temnikov, “Electric-pulsed method for getting powders of metals and alloys,” Poroshk. Metallutgiya, No. 2, 9–15 (1978).

  10. A. A. Shcherba and M. A. Shcherba, “Modeling and analysis of electric fields in dielectric media perturbed by conducting microinclusions of different sizes and configurations,” Tekh. Elektrodynam., No. 6, 3–9 (2010).

  11. A. A. Shcherba, S. M. Zakharchenko, and L. Yu. Spinul, “Regularities of changes in electric resistance of a layer of aluminum granules subjected to electric-spark dispersion,” Pratsi Inst. Elektrodynamiky NASU, No. 25, 133–139 (2010).

  12. A. A. Shcherba and S. V. Petrichenko, “Influence of the parameters of electric discharges on the dynamics of spark-discharge channels in the course of volume electric-spark processing of a plane layer of current-conducting granules,” Tekh. Elektrodyn., Them. Issue “Power Electronics and Energy Efficiency,” 61–65 (2002).

  13. N. I. Kuskova, S. V. Petrichenko, P. L. Tsolin, and V. Yu. Baklar’, “Dependence of the output of carbon nanomaterials on the structure of molecules of organic liquids in the course of electric discharge treatment,“ Elektron. Obrab. Mater., 49, No. 1 14–19 (2013).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Prystash.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 57, No. 2, pp. 64–69, March–April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sizonenko, О.М., Prystash, M.S., Таftai, E.І. et al. Modeling of Electric-Discharge Processes in the Course of Treatment of Titanium in Hydrocarbon Liquids. Mater Sci 57, 209–214 (2021). https://doi.org/10.1007/s11003-021-00533-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-021-00533-2

Keywords

Navigation