Skip to main content
Log in

Gas-dynamic and thermal processes in the synthesis of trichlorosilane by hydrogen reduction of silicon tetrachloride in a high-frequency discharge

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The results of numerical simulation of gas-dynamic processes in heat exchange during a plasma chemical synthesis of trichlorosilane under high frequency discharge were reported. Modeling was performed for optimal conditions of trichlorosilane synthesis with use of contemporary computational methods of hydrodynamics that allowed more exact definition of the velocity and temperature fields, gas flow in a plasma area, and also determination of temperature ranges of reaction zones and proportion in the gas mixture entering the respective zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. US Patent 4309259 A, 1982.

  2. RF Patent 350558, 2009.

  3. US Patent US 4542004 A, 1985.

  4. Lu, Z., and Zhang, W., Chinese J. Chem. Eng., 2014, vol. 22, no. 2, pp. 227–233.

    Article  CAS  Google Scholar 

  5. Rusanov, V.D. and Fridman, A.A., Fizika khimicheski ak tivnoi plazmy (Physics of Chemically Active Plasma), Moscow.: Nauka, 1984.

    Google Scholar 

  6. Parkhomenko, V.D., Soroka, P.I., and Ganz, S.N., Teoret. Osnovy Khim. Tekhnologii, 1974, vol. 8, no. 1, pp. 60–65.

    Google Scholar 

  7. Giesen, B., Wiggers, H., Kowalik, A., and Roth, P., J. Nanopar ticle Research., 2005, vol. 7, no. 1. pp. 29–41.

    Article  CAS  Google Scholar 

  8. Soroka, B.S., Zgurskiy, V.A., and Khinkis, M., Modern Science: Researches, Ideas, Results, Technologies, 2013, no. 1(12). pp. 368–374.

    Google Scholar 

  9. Borovskoi, A.M., Advances Appl. Phys., 2014, vol. 2, no. 2, p. 105.

    Google Scholar 

  10. RF Patent 2142909, 1999.

  11. Wolf, E. and Teichmann, R., Z. Anorg. Allgem. Chem., 1980, vol. 460, no. 1, pp. 65–80.

    Article  CAS  Google Scholar 

  12. Sirtl, E., Hunt, L.P., and Sawyer, D.H., J. Electrochem. Soc., 1974, vol. 121, no. 7, pp. 919–925.

    Article  CAS  Google Scholar 

  13. Furman, A.A., Neorganicheskie khloridy (Inorganic Chlorides), Moscow: Khimiya, 1980.

    Google Scholar 

  14. Rabinovich, V.A., Khavin, Z.A., Kratkii khimicheskii spravochnik (Brief Chemical Habdbook), Leningrad: Khimiya, 1991.

    Google Scholar 

  15. Menter, F.R., AIAA J., 1994, vol. 32, no. 8. pp. 1598–1605.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Kornev.

Additional information

Original Russian Text © R.A. Kornev, V.A. Shaposhnikov, A.M. Kuz’min, 2014, published in Zhurnal Prikladnoi Khimii, 2014, Vol. 87, No. 9, pp. 1250–1254.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kornev, R.A., Shaposhnikov, V.A. & Kuz’min, A.M. Gas-dynamic and thermal processes in the synthesis of trichlorosilane by hydrogen reduction of silicon tetrachloride in a high-frequency discharge. Russ J Appl Chem 87, 1246–1250 (2014). https://doi.org/10.1134/S1070427214090092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427214090092

Keywords

Navigation