Skip to main content
Log in

Production of Nanoporous Zeolites Modified by Silver Ions with Antibacterial Properties

  • Published:
Materials Science Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We study the effect of activation of clinoptilolite specimens by the solutions of HCl, H2SO4 , NaOH, and NH4Cl with their subsequent thermal treatment for the sorption capacity in silver ions. It is shown that the highest sorption capacity is observed for the clinoptilolite activated by a sodium-hydroxide solution. It was established that, in all cases, the increment of sorption capacity observed upon attainment of a temperature of 200°С is insignificant. The rate of sorption of silver ions by clinoptilolite preliminarily activated by reagents is higher than the initial rate (without activation) by an order of magnitude. We also established the influence of the temperature of treatment of chemically activated clinoptilolite on the sorption rate of silver ions. It was shown that their absorption by clinoptilolite occurs according to the mechanisms of ion exchange and sorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Z. V. Slobodyan, Z. M. Il’nyts’kyi, L. A. Mahlatyuk, R. B. Kupovych, and I. V. Semenyuk, “Ecologically safe inhibitors of the corrosion activity of lubricoolants,” Fiz.-Khim. Mekh. Mater., 54, No. 4, 48–51 (2018); English translation: Mater. Sci., 54, No. 4, 496–500 (2019).

  2. I. M. Zin’, O. V. Karpenko, T. Ya. Pokyn’broda, N. I. Korets’ra, M. B. Tymus’, L. Kwiatkowski, and S. A. Kornii, “Inhibition of the corrosion of carbon steels by trehalose lipid surfactants,” Fiz.-Khim. Mekh. Mater., 54, No. 4, 31–38 (2018); English translation: Mater. Sci., 54, No. 4, 477–484 (2019).

  3. A. M. Atta, G. A. El-Mahdy, H. A. Al-Lohedan, and A. O. Ezzat, “Synthesis and application of hybrid polymer composites based on silver nanoparticles as corrosion protection for line pipe steel,” Molecules, No. 19, 6246–6262 (2014); doi:https://doi.org/10.3390/molecules19056246.

  4. R. Zeng, L. Liu, S. Li, Y. Zou, F. Zhang, Y. Yang, H. Cui, and E. Han, “Self-assembled silane film and silver nanoparticles coating on magnesium alloys for corrosion resistance and antibacterial applications,” Acta Metallurg. Sin., 26, No. 6, 681–686 (2013).

    Article  CAS  Google Scholar 

  5. J. Narenkumar, P. Parthipan, J. Madhavan, K. Murugan, S. B. Marpu, A. K. Suresh, and A. Rajasekar, “Bioengineered silver nanoparticles as potent anticorrosive inhibitor for mild steel in cooling towers,” Environ. Sci. Pollut. Res. Int., 25, No. 6, 5412–5420 (2018).

    Article  CAS  Google Scholar 

  6. A. M. Atta, H. A. Allohedan, G. A. El-Mahdy, and A-R. O. Ezzat, “Application of stabilized silver nanoparticles as thin films as corrosion inhibitors for carbon steel alloy in 1 M hydrochloric acid,” J. Nanomater. (2013), Article ID 580607; https://doi.org/10.1155/2013/580607.

  7. A. S. Johnson, I. B. Obot, and U. S. Ukpong, “Green synthesis of silver nanoparticles using Artemisia annua and Sida acuta leaves extract and their antimicrobial, antioxidant and corrosion inhibition potentials,” J. Mater. Environ. Sci., 5, No. 3, 899–905 (2014).

    Google Scholar 

  8. L. A. Tamayo, P. A. Zapata, N. D. Vejar, M. I. Azócar, M. A. Gulppi, Х. Zhou, G. E. Thompson, F. M. Rabagliati, and M. A. Páez, “Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes,” Mater. Sci. Eng., Ser. C, 40, No. 1, 24–31 (2014); https://doi.org/https://doi.org/10.1016/j.msec.2014.03.037.

  9. E. A. Gonzáleza, N. Leivaa, N. Vejarc, M. Sancyb, M. Gulppia, M. I. Azócara, G. Gomeza, L. Tamayoe, X. Zhoud, G. E. Thompsond, and M. A. Páez, “Sol-gel coatings doped with encapsulated silver nanoparticles: inhibition of biocorrosion on 2024-T3 aluminum alloy promoted by Pseudomonas aeruginosa,J. Mater. Res. Technol., 8, No. 2, 1809–1818 (2019).

    Article  Google Scholar 

  10. O. V. Hres’, S. V. Holovan’, E. V. Lebedev, and V. F. Matyushov, “Acrylate silver dispersions and composite polymeric materials base on these dispersions,” Ukr. Khim. Zh., 75, No. 1, 63–67 (2009).

    Google Scholar 

  11. V. I. Pokhmurskyi, I. M. Zin, S. A. Kornii, Ya. I. Zin, and B. P. Kosarevych, “Theoretical and experimental prerequisites of the application of nanoporous ion-modified zeolites aimed at improvement of the protective properties of organic coatings,” Nanostrukt. Materialoznav., No. 1, 78–87 (2013).

  12. N. M. Ahmed, H. S. Emira, and M. M. Selim, “Anticorrosive performance of ion-exchange zeolites in alkyd-based paints,” Pigment Resin Technol., 40, No. 2, 91–99 (2011); https://doi.org/https://doi.org/10.1108/03699421111113747.

  13. S. A. S. Diasa, S. V. Lamaka, C. A. Nogueira, T. C. Diamantino, and M. G. S. Ferreirab, “Sol-gel coatings modified with zeolite fillers for active corrosion protection of AA2024,” Corr. Sci., No. 62, 153–162 (2012).

  14. V. Pokhmurskii, L. Bily, Y. Zin, and M. Voloshyn, “Inhibition of the corrosion of aluminum alloy by a composition of ionexchange pigments,” Fiz.-Khim. Mekh. Mater., 51, No. 5, 43–47 (2015); English translation: Mater. Sci., 51, No. 5, 638–643 (2016).

  15. V. D. Rybachuk, О. А. Ruban, and N. I. Filimonova, “Microbiological substantiation of the choice of concentration of antimicrobial substances in the composition of a powder based on natural zeolite (clinoptilolite),” Ukr. Biofarm. Zh., No. 1 (58), 4–9 (2019).

  16. S. K. Pavelic, J. S. Medica, D. Gumbarevic, A. Filosevic, N. Przuli, and K. Pavelic, “Clinoptilolite safety and medical applications in vivo. Critical review on zeolite,” Front. Pharm., No. 9, 1–1350 (2018); https://doi.org/https://doi.org/10.3389/fphar.2018.01350.

  17. L. Petrik, R. Missengue, O. Fatoba, M. Tuffin, and J. Sachs, Silver/Zeolite Nano-Composite-Based Clay Filters for Water Disinfection, Report to the Water Research Commission. WRC Report No. KV 297/12, Gezina ( 2012).

  18. A. S. Hrabarovska, Z. O. Znak, and P. P. Olenych, “Investigation of the activation of natural clinoptilolite by ultrahigh-frequency electromagnetic radiation,” Khim. Tekhnol. Rechov. Zastos., 1, No. 2, 21–26 (2018).

    Google Scholar 

  19. Z. O. Znak, A. S. Hrabarovska, O. I. Zin, and A. V. Dyadenchuk, “Modification of thermally activated natural clinoptilolite with silver ions,” Visn. Cherkasy Derzh. Tekh. Univ., Tekh. Nauky, No. 4, 79–87 (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. А. Коrnii.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 56, No. 4, pp. 93–99, July–August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Znak, Z.О., Коrnii, S.А., Маshtaler, A.S. et al. Production of Nanoporous Zeolites Modified by Silver Ions with Antibacterial Properties. Mater Sci 56, 536–543 (2021). https://doi.org/10.1007/s11003-021-00461-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-021-00461-1

Keywords

Navigation