Skip to main content
Log in

Electrodes Based on Amorphous Metallic Aluminum Alloys in the Reactions of Hydrogen Release

  • Published:
Materials Science Aims and scope

We estimate the electrochemical activity of specimens of the amorphous metallic alloys (АМA) Al87Ni8Y5, Al87Ni8Y4Gd1, and Al87Ni8Dy1Y4 in alkaline solutions of potassium hydroxide of different concentrations and the influence of partial substitution of 1 at. % Gd or Dy for Y. It is shown that all investigated specimens are corrosion-resistant in the course of cyclic polarization within the potential range from – 1.2 to + 1.0 V in aqueous KОН solutions of various concentrations (0.5–5.0) М. It is shown that AMA electrodes alloyed with 1 at.% Dy exhibit the highest catalytic activity in a 4 М KОН solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. N. Eliaz and D. Eliezer, “An overview of hydrogen interaction with amorphous alloys,” Adv. Perform. Mater., 6, 5–31 (1999).

    Article  Google Scholar 

  2. F. Rosalbino, S. Delsante, G. Borsone, and E. Angeline, “Electrocatalytic behavior of Co–Ni–R (R = Rare Earth Metal) crystalline alloys as electrode materials for hydrogen evolution reaction in alkaline medium,” Int. J. Hydrogen Energy, 33, 6696–6703 (2008).

    Article  Google Scholar 

  3. L. M. Boichyshyn, O. M. Hertsyk, M. A. Kovbus, T. G. Pereverzeva, and B. Ya. Kotur, “Electrocatalytic evolution of hydrogen on amorphous Fe–Nb–B–rare-earth-metal electrodes from alkaline solutions,” Russ. J. Appl. Chem., 87, No. 1, 62–69 (2014).

    Article  Google Scholar 

  4. S. Marini, P. Salvi, P. Nelli, R. Pesenti, M. Villa, and Y. Kiros, “Stable and inexpensive electrodes for the hydrogen evolution reaction,” Int. J. Hydrogen Energy, 38, No. 26, 11484–11495 (2013).

    Article  Google Scholar 

  5. M. A. Dominguez-Crespo, A. M. Torre-Huerta, B. Brachetti-Sibaja, and A. Flores-Vela, “Electrochemical performance of Ni–RE (RE = rare earth) as electrode material for hydrogen evolution reaction in alkaline medium,” Corros. Sci., 36, 135–151 (2011).

    Google Scholar 

  6. L. Fan, H. Lu, and J. Leng, “Performance of fine structured aluminum anodes in neutral and alkaline electrolytes for Al-air batteries,” Electrochim. Acta, 165, 22–28 (2015).

    Article  Google Scholar 

  7. C. Kjartansdóttir, M. Caspersen, S. Egelund, and P. Moller, “Electrochemical investigation of surface area effects on PVD Al–Ni as electrocatalyst for alkaline water electrolysis,” Electrochim. Acta, 142, 324–335 (2014).

    Article  Google Scholar 

  8. N. R. Tailleart, R. Huang, T. Aburada, D. J. Horton, and J. R. Scully, “Effect of thermally induced relaxation on passivity and corrosion of an amorphous Al–Co–Ce alloy,” Corros. Sci., 59, 238–248 (2012).

    Article  Google Scholar 

  9. J. G. Lin, W. W. Wang, X. Q. Wu, J. H. Lei, and S. Yin, “Crystallization and corrosion resistance of as-spun (Al86Ni9La5)98 Zr2 amorphous alloy,” J. Alloys Compound., 478, No. 1–2, 763–766 (2009).

    Article  Google Scholar 

  10. L. M. Boichyshyn, O. M. Hertsyk, M. O. Kovbuz, T. H. Pereverzeva, and B. Ya. Kotur, “Properties of amorphous alloys of Al–REM–Ni and Al–REM–NI–Fe systems with nanocrystalline structure,” Fiz.-Khim. Mekh. Mater., 48, No. 4, 127–131 (2012); English translation: Mater. Sci., 48, No. 4, 555–559 (2013).

  11. E. Czech and T. Troczynski, “Hydrogen generation through massive corrosion of deformed aluminum in water,” Int. J. Hydrogen Energy, 35, 1029–1037 (2010).

    Article  Google Scholar 

  12. F. Rosalbino, E. Angelini, S. De Negri, A. Saccone, and S. Delfino, “Electrochemical behavior assessment of novel Mg-rich Mg–Al–RE alloys (RE = Ce, Er),” Intermetallics, 14, 1487–1492 (2006).

    Article  Google Scholar 

  13. V. I. Lad’yanov, A. L. Bel’tykov, S. G. Men’shikova, V. V. Maslov, V. K. Nosenko, and V. A. Mashira, “Viscosity of glass forming Al86Ni8(La/Ce)6, Al86Ni6Co2Gd4 (Y/Tb)2 melts,” Phys. Chem. Liq., 46, No. 1, 71–77 (2008).

    Article  Google Scholar 

  14. L. Boichyshyn, M. Kovbuz, O. Hertsyk, V. Nosenko, and B. Kotur, “Influence of structurization of amorphous metallic alloys Al87Y5−x Gd x Ni8−y (x = 0, 1, 5; y = 0, 4) on their mechanical properties,” Phys. Solid State, 55, No. 2, 243–246 (2013).

    Article  Google Scholar 

  15. T. Mika, M. Karolus, G. Haneczok, L. Bednarska, E. Łagiewka, and B. Kotur, “Influence of Gd and Fe on crystallization of Al87Y5Ni8 amorphous alloy,” J. Non-Crystal. Solids, 354, No. 27, 3099–3106 (2008).

    Article  Google Scholar 

  16. Y. Liu, S. L. Ye, B. An, Y. G. Wang, Y. J. Li, L. C. Zhang, and W. M. Wang, “Effects of mechanical compression and autoclave treatment on the backbone clusters in the Al86Ni9La5 amorphous alloy,” J. Alloys Compd., 587, 59–65 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. М. Boichyshyn.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 51, No. 4, pp. 100–106, July–August, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boichyshyn, L.М., Hertsyk, О.М., Kovbuz, М.О. et al. Electrodes Based on Amorphous Metallic Aluminum Alloys in the Reactions of Hydrogen Release. Mater Sci 51, 548–554 (2016). https://doi.org/10.1007/s11003-016-9874-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-016-9874-8

Keywords

Navigation