Skip to main content
Log in

Service life and fracture of solid bodies under the conditions of cyclic contact interaction

  • Published:
Materials Science Aims and scope

Abstract

A numerical-analytic model is formulated for the investigation of fracture processes and evaluation of the residual service life of solid bodies under the conditions of cyclic contact interaction. The model is based on the criteria of fracture of materials in the process of growth of fatigue cracks and the algorithms of step-by-step construction of the paths crack propagation developed by the method of singular integral equations for two-dimensional contact problems of the theory of elasticity for bodies with curvilinear cracks. The model is realized for contact interactions of rolling and fretting fatigue. The causes and specific features of the formation of typical defects in rolling bodies of revolution, such as pitting, spalling, squat defects, and cracking are analyzed depending on the operating parameters of a rolling couple. It is shown that, both in the case of rolling and under the conditions of fretting fatigue, the character of fracture of the contact surface and the sizes of debris particles are strongly affected by the value of the friction coefficient, the distribution of tangential forces between contacting bodies, the characteristics of cyclic crack-growth resistance of the material, and the service or random products in the contact zone (water, lubricants, powder fretting products, etc.). We present examples of evaluation of the residual service life of rail (RSB12) and roller (9KhF and GH) steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Hertz, “Ueber die Berührung fester elastischer Körper,” J. Reine und Angew. Math, 92, No. 3–4, 156–171 (1882).

    Google Scholar 

  2. H. Hertz, “Ueber die Berührung fester elastischer Körper und über die Härte,” Verhandlungen des Vereins zur Beförderung des Gewerbefleisses, 61, 449–470 (1882).

    Google Scholar 

  3. Yu. V. Kolesnikov and E. M. Morozov, Mechanics of Contact Fracture [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  4. B. R. Lawn and T. R. Wilshaw, “Indentation fracture: principles and application,” J. Mater. Sci., 10, No. 6, 1049–1081 (1975).

    Article  Google Scholar 

  5. S. V. Pinegin, Contact Strength and Rolling Resistance [in Russian], Mashinostroenie, Moscow (1969).

    Google Scholar 

  6. R. B. Waterhouse, Fretting Corrosion [Russian translation], Mashinostroenie, Leningrad (1976).

    Google Scholar 

  7. L. A. Sosnovskii, N. A. Makhutov, and V. A. Shurinov, “Fretting fatigue: basic regularities,” Zavod. Lab., 58, No. 8, 45–62 (1992).

    CAS  Google Scholar 

  8. L. A. Sosnovskii, N. A. Makhutov, and V. A. Shurinov, “Friction-mechanical fatigue: basic regularities,” Zavod. Lab., 58, No. 9, 46–63 (1992).

    CAS  Google Scholar 

  9. L. A. Sosnovskii, N. A. Makhutov, and V. A. Shurinov, “Contact-mechanical fatigue: basic regularities,” Zavod. Lab., 58, No. 11, 44–61 (1992).

    Google Scholar 

  10. M. Hebda and A. V. Chichinadze (editors), A Handbook of Triboengineering [in Russian], Mashinostroenie, Moscow; VKL, Warsaw (1989).

    Google Scholar 

  11. V. V. Shevelya and G. S. Kalda, Fretting Fatigue of Metals [in Russian], Podillya, Khmelnitskii (1998).

    Google Scholar 

  12. L. T. Balatskii, Strength of Pressed Joints [in Russian], Tekhnika, Kiev (1982).

    Google Scholar 

  13. D. P. Rooke and D. A. Jones, “Stress intensity factors in fretting fatigue,” J. Strain Anal., 14, No. 1, 1–6 (1979).

    Google Scholar 

  14. L. A. Dekhovich and N. A. Makhutov, “Application of fracture mechanics to the evaluation of fretting-fatigue strength,” Fiz.-Khim. Mekh. Mater., 17, No. 3, 86–90 (1981).

    Google Scholar 

  15. V. T. Troshchenko, G. V. Tsybanev, and A. O. Khotsyanovskii, “Durability of steels in fretting fatigue,” Probl. Prochn., No. 6, 3–8 (1988).

    Google Scholar 

  16. M. C. Dubourg and B. Villechaise, “Stress intensity factors in a bent crack: a model,” Eur. J. Mech., A/Solids, 11, No. 2, 169–179 (1992).

    Google Scholar 

  17. D. A. Hills and D. Nowell, Mechanics of Fretting Fatigue, Kluwer, Dordrecht (1994).

    Google Scholar 

  18. S. Faanes, “Inclined cracks in fretting fatigue,” Eng. Fract. Mech., 52, No. 1, 71–82 (1995).

    Article  Google Scholar 

  19. U. S. Fernando, M. W. Brown,, and K. J. Miller, “Linear elastic fracture mechanics interpretation of crack growth behavior in fretting fatigue,” in: Advances in Fracture Resistance in Materials (ICF-8), Vol. 2, Tat McGraw-Hill Publ., New Delhi (1996), pp. 207–215.

    Google Scholar 

  20. L. M. Keer and M. D. Bryant, “A pitting model for rolling contact fatigue,” Trans. ASME: J. Lubric. Technol., 105, No. 2, 198–205 (1983).

    Google Scholar 

  21. A. D. Hearly and K. L. Johnson, “Mode II stress intensity factors for a crack parallel to the surface of an elastic half space subjected to a moving point load,” J. Mech. Phys. Solids, 33, No. 1, 61–81 (1985).

    Article  Google Scholar 

  22. M. Kaneta, H. Yatsuzuka, and Y. Murakami, “Mechanism of crack growth in lubricated rolling/sliding contact,” ASLE Trans., 28, No. 3, 407–414 (1985).

    Google Scholar 

  23. S. D. Sheppard, J. R. Barber, and M. Comninou, “Subsurface cracks under conditions of slip, stick, and separation caused by a moving compressive load,” Trans. ASME: J. App. Mech., 54, No. 2, 393–398 (1987).

    Google Scholar 

  24. A. F. Bower, “The influence of crack face friction and trapped fluid on surface initiated rolling contact fatigue cracks,” Trans. ASME: J. Tribol., 110, No. 4, 704–711 (1988).

    Article  Google Scholar 

  25. A. P. Datsyshin and M. P. Savruk, “Integral equations of a plane problem of the theory of cracks,” Prikl. Mat. Mekh., 38, No. 4, 728–737 (1974).

    Google Scholar 

  26. V. V. Panasyuk, M. P. Savruk, and A. P. Datsyshin, Distribution of Stresses Near Cracks in Plates and Shells[in Russian], Naukova Dumka, Kiev (1976).

    Google Scholar 

  27. V. V. Panasyuk, M. P. Savruk, and O. P. Datsyshyn, “A general method of solution of two-dimensional problems in the theory of cracks,” Eng. Fract. Mech., 9, No. 2, 481–497 (1977).

    Article  Google Scholar 

  28. M. P. Savruk, Two-Dimensional Problems of Elasticity for Bodies with Cracks [in Russian], Naukova Dumka, Kiev (1981).

    Google Scholar 

  29. A. P. Datsyshin and G. P. Marchenko, “Interaction of curvilinear cracks with the boundary of an elastic half plane,” Fiz.-Khim. Mekh. Mater., 20, No. 5, 64–71 (1984).

    Google Scholar 

  30. V. V. Panasyuk, O. P. Datsyshyn, and H. P. Marchenko, “Stress state of a half plane with cracks under rigid punch action,” Int. J. Fract., 101, No. 4, 347–364 (2000).

    Article  Google Scholar 

  31. O. P. Datsyshyn and A. B. Levus, “Stress intensity factors for a system of edge cracks in a half plane under the action of Hertz pressure on its boundary,” Mashynoznavstvo, No. 11, 9–15 (2000).

  32. O. P. Datsyshyn and H. P. Marchenko, “Evaluation of the period of growth of a surface crack according to the mechanism of shear in rolling contact,” Mashynoznavstvo, No. 7, 21–28 (2003).

  33. V. V. Panasyuk and O. P. Datsyshyn, “Calculational model of fatigue fracture of solids under their contact interaction,” in: M. H. Aliabadi and C. Alessandri (editors), Contact Mechanics II. Computational Techniques, Computational Mechanics Publications, Southampton-Boston (1995), pp. 385–392.

    Google Scholar 

  34. O. P. Datsyshyn, “Fracture and wear processes simulating under cyclic contact of solid bodies,” in: J. Petit (editor), ECF-11. Mechanism and Mechanics of Damage and Failure, Vol. 2, EMAS, Warley, UK (1996), pp. 1411–1416.

    Google Scholar 

  35. O. P. Datsyshyn, “Computational model of fatigue fracture of solid bodies under the conditions of contact interaction,” in: Nauk. Notat. Lutsk State Tech. Univ., Issue 7, 74–78 (2000).

  36. O. P. Datsyshyn, H. P. Marchenko, A. Yu. Hlazov, and A. B. Levus, “On one approach to the evaluation of durability of solid bodies,” Fiz.-Khim. Mekh. Mater., 40, No. 4, 47–52 (2004).

    Google Scholar 

  37. V. V. Panasyuk, O. P. Datsyshyn, and H. P. Marchenko, “To crack propagation theory under rolling contact,” Eng. Fract. Mech., 52, No. 1, 179–191 (1995).

    Article  Google Scholar 

  38. O. P. Datsyshyn and V. V. Panasyuk, “Pitting of the rolling bodies contact surface,” Wear, 251, 1347–1355 (2001).

    Article  Google Scholar 

  39. O. P. Datsyshyn and M. M. Kopylets’, “Prediction of the service life of rolling bodies according to the propagation of subsurface cracks,” Fiz.-Khim. Mekh. Mater., 39, No. 6, 12–23 (2003).

    Google Scholar 

  40. O. P. Datsyshyn and A. Yu. Hlazov, “Prediction of the service life of rolling bodies according to the development of pitting,” in: V. V. Panasyuk (editor), Fracture Mechanics of Materials and Strength of Structures. Proc. of the Third Internat. Sci. Conf. [in Ukrainian], Karpenko Physicomechanical Institute, Ukrainian Academy of Sciences, Lviv (2004), pp. 243–248.

    Google Scholar 

  41. O. P. Datsyshyn, “Computational model for the investigation of fracture and evaluation of the service life of structural materials in fretting fatigue,” Nauk. Visn. Ukr. Derzh. Lisotekhn. Univ., Issue 9.6, 139–149 (1999).

  42. V. V. Panasyuk, O. P. Datsyshyn, and R. B. Shchur, “Residual life of contacting solid bodies under the conditions of fretting fatigue,” Fiz.-Khim. Mekh. Mater., 36, No. 2, 5–19 (2000).

    Google Scholar 

  43. O. P. Datsyshyn, O. S. Kalakhan, V. M. Kadyra, and R. B. Shchur, “Pitting under the conditions of fretting fatigue,” Fiz.-Khim. Mekh. Mater., 40, No. 2, 7–18 (2004).

    Google Scholar 

  44. O. P. Datsyshyn and V. M. Kadyra, “A fracture-mechanics approach to the prediction of pitting under fretting fatigue conditions, Int. J. Fatigue (to be published).

  45. O. N. Romaniv, S. Ya. Yarema, G. N. Nikiforchin, et al., “Fatigue and cyclic crack-growth resistance of structural materials,” in: Fracture Mechanics and Strength of Materials. A Handbook [in Russian], Vol. 4, Naukova Dumka, Kiev (1990).

    Google Scholar 

  46. V. V. Panasyuk and L. T. Berezhnitskii, “Determination of the ultimate forces in tension of a plate containing an bow-shaped crack,” in: G. V. Karpenko (editor), Problems of Mechanics of Actual Solid Body [in Russian], Naukova Dumka, Kiev (1964), pp. 3–19.

    Google Scholar 

  47. S. Ya. Yarema, “Propagation of curvilinear cracks in plates,” Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 2, 156–163 (1988).

  48. P. E. Bold, M. W. Brown, and R. J. Allen, “Shear mode crack growth and rolling contact fatigue,” Wear, 144, No. 2, 307–317 (1991).

    Article  Google Scholar 

  49. K. J. Miller, Structural Integrity-Whose Responsibility?, Inst. Mech. Eng., London (2001).

    Google Scholar 

  50. S. Ya. Yarema and S. I. Mikitishin, “Analytic description of the diagram of fatigue fracture,” Fiz.-Khim. Mekh. Mater., 11, No. 6, 47–54 (1975).

    Google Scholar 

  51. Y. Murakami, C. Sakae, and S. Hamada, “Mechanism of rolling contact fatigue and measurements of ΔK II th for steels,” in: J. H. Beynon, M. W. Brown, T. C. Lindley, et al., Engineering Against Fatigue, Balkema Publ., Rotterdam (1999), pp. 473–485.

    Google Scholar 

  52. A. E. Andreikiv and A. I. Darchuk, Fatigue Fracture and Durability of Structures [in Russian], Naukova Dumka, Kiev (1992).

    Google Scholar 

  53. D. F. Cannon, K. O. Edel, S. L. Grassie, and K. Sawley, “Rail defects: An overview,” Fract. Eng. Mater. Struct., 26, No. 10, 865–886 (2003).

    Article  Google Scholar 

  54. N. P. Morozov, V. A. Nikolaev, V. P. Polukhin, and A. M. Legun, Production and Operation of Large Backup Rolls [in Russian], Metallurgiya, Moscow (1977).

    Google Scholar 

  55. S. Way, “Pitting due to rolling contact,” J. Appl. Mech., Trans. ASME, 2, A49–A58 (1935).

    Google Scholar 

  56. O. P. Datsyshyn, V. V. Panasyuk, R. E. Pryshlyak, A. B. Terlets’kyi, “Crack-growth paths for edge cracks in rolling bodies under the conditions of boundary lubrication,” Fiz.-Khim. Mekh. Mater., 37, No. 3, 5–12 (2001).

    Google Scholar 

  57. V. V. Panasyuk, O. P. Datsyshyn, and H. P. Marchenko, “Crack growth in rolling bodies under the conditions of dry friction and wetting,” Fiz.-Khim. Mekh. Mater., 37, No. 1, 7–16 (2001).

    Google Scholar 

  58. V. V. Panasyuk, O. P. Datsyshyn, and A. B. Levus, “Evolution of a system of edge cracks in the region of rolling bodies cyclic contact,” in: A. Neimitz et al., (editors), ECF-14, Fracture Mechanics. Beyond 2000, Vol. I/III, EMAS Publ., Sheffield, UK (2002), pp. 609–616.

    Google Scholar 

  59. A. Mašin, “Přispěvek k porušeni kolejnic kontaktni únavou,” Strojirenstvi, 35, No. 8, 447–451 (1985).

    Google Scholar 

  60. N. A. Zhidovtsev, K. B. Katsov, G. V. Karpenko, et al, Durability of Drill Bits [in Russian], Naukova Dumka, Kiev (1979).

    Google Scholar 

  61. M. F. Frolish, D. I. Fletcher, and J. H. Beynon, “A quantitative model for predicting the morphology of surface initiated rolling contact fatigue cracks in back-up roll steels,” Fatigue Fract. Eng. Mater. Struct., 25, 1073–1086 (2002).

    Article  Google Scholar 

  62. K. Johnson, Mechanics of Contact Interaction [Russian translation], Moscow, Mir (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 41, No. 6, pp. 5–25, November–December, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Datsyshyn, O.P. Service life and fracture of solid bodies under the conditions of cyclic contact interaction. Mater Sci 41, 709–733 (2005). https://doi.org/10.1007/s11003-006-0037-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-006-0037-1

Keywords

Navigation