Skip to main content

Advertisement

Log in

Segmentation of the Manila subduction system from migrated multichannel seismics and wedge taper analysis

  • Original Research Paper
  • Published:
Marine Geophysical Research Aims and scope Submit manuscript

Abstract

Based on bathymetric data and multichannel seismic data, the Manila subduction system is divided into three segments, the North Luzon segment, the seamount chain segment and the West Luzon segment starts in Southwest Taiwan and runs as far as Mindoro. The volume variations of the accretionary prism, the forearc slope angle, taper angle variations support the segmentation of the Manila subduction system. The accretionary prism is composed of the outer wedge and the inner wedge separated by the slope break. The backstop structure and a 0.5–1 km thick subduction channel are interpreted in the seismic Line 973 located in the northeastern South China Sea. The clear décollement horizon reveals the oceanic sediment has been subducted beneath the accretionary prism. A number of splay faults occur in the active outer wedge. Taper angles vary from 8.0° ± 1° in the North Luzon segment, 9.9° ± 1° in the seamount segment to 11° ± 1° in the West Luzon segment. Based on variations between the taper angle and orthogonal convergence rates in the world continental margins and comparison between our results and the global compilation, different segments of the Manila subduction system fit well the global pattern. It suggests that subduction accretion dominates the north Luzon and seamount chain segment, but the steep slope indicates in the West Luzon segment and implies that tectonic erosion could dominate the West Luzon segment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bangs N, Westbrook G (1991) Seismic modeling of the decollement zone at the base of the Barbados ridge accretionary complex. J Geophys Res 96:3853–3866. doi:10.1029/90JB02138

    Article  Google Scholar 

  • Bangs N, Shipley T, Moore J, Moore G (1999) Fluid accumulation and channeling along the north Barbados ridge decollement thrust. J Geophys Res 104:20399–20414. doi:10.1029/1999JB900133

    Article  Google Scholar 

  • Bangs N, Christeson G, Shipley T (2003) Structure of the Lesser Antilles subduction zone backstop and its role in a large accretionary system. J Geophys Res 108(B7):2358. doi:10.1029/2002JB002040

    Google Scholar 

  • Barckhausen U, Roeser, HA (2004) Seafloor spreading anomalies in South China Sea revisited. In: Clift P, Wang P, Kuhnt W, Hayes D (eds) Continent–ocean interactions within east Asian marginal seas. Geophysical Monograph, 149, American Geophysical Union, Washington, DC, pp 121–125. doi:10.1029/149GM07

  • Bautista BC, Bautista MLP, Oike K, Wu FT, Punongbayan RS (2001) A new insight on the geometry of subducting slabs in northern Luzon, Philippines. Tectonophysics 339:279–310. doi:10.1016/S0040-1951(01)00120-2

    Article  Google Scholar 

  • Beaumont C, Ellis S, Pfiffner A (1999) Dynamics of sediment subduction-accretion at convergent margins: short-term modes, long-term deformation, and tectonic implications. J Geophys Res 104(B8):17573–17601. doi:10.1029/1999JB900136

    Article  Google Scholar 

  • Berninghausen WH (1969) Tsunami and seismic seiches of Southeast Asia. Bull Seismol Soc Am 59(1):289–297

    Google Scholar 

  • Bowin C, Lu RS, Lee CS, Schouten H (1978) Plate convergence and accretion in Taiwan-Luzon region. AAPG Bull 62:1645–1672

    Google Scholar 

  • Briais A, Patriat P, Tapponnier P (1993) Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: implications for the Tertiary Tectonics of Southeast Asia. J Geophys Res 98(B4):6299–6328. doi:10.1029/92JB02280

    Article  Google Scholar 

  • Chi WC, Reed DL, Moore G, Nguyen T, Liu CS, Lundberg N (2003) Tectonic wedging along the rear of the offshore Taiwan accretionary prism. Tectonophysics 374:199–217. doi:10.1016/j.tecto.2003.08.004

    Article  Google Scholar 

  • Clift PD, Vannucchi P (2004) Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev Geophys 42:RG2001. doi:10.1029/2003RG000127

    Google Scholar 

  • Clift PD, Schouten H, Draut AE (2003) A general model of arc-continent collision and subduction polarity reversal from Taiwan and the Irish Caledonides. In: Larter RD, Leat PT (eds) Intra-oceanic subduction systems: tectonic and magmatic processes. Special Publication 219, Geological Society, London, pp 81–98. doi:10.1144/GSL.SP.2003.219.01.04

    Google Scholar 

  • Clift PD, Lin ATS, Carter A, Wu F, Draut AE, Lai TH, Fei Y, Schouten H, Teng L (2008) Post-collisional collapse in the wake of migrating arc-continent collision in the Ilan Basin, Taiwan. In: Draut AE, Clift PD, Scholl DW (eds) Formation and applications of the sedimentary record in arc collision zones. Geological Society of America Special Paper 436, pp 257–278. doi:10.1130/2008.2436(12)

  • Collot JY, Agudelo W, Ribodetti A, Marcaillou B (2008) Origin of a crustal splay fault and its relation to the seismogenic zone and underplating at the erosional north Ecuador–south Colombia oceanic margin. J Geophys Res 113:B12102. doi:10.1029/2008JB005691

    Article  Google Scholar 

  • Dahlen FA (1990) Critical taper model of fold-and-thrust belts and accretionary wedges. Annu Rev Earth Planet Sci 18:55–99. doi:10.1146/annurev.ea.18.050190.000415

    Article  Google Scholar 

  • Davis DM, Suppe J, Dahlen FA (1983) Mechanics of fold-and-thrust belts and accretionary wedges. J Geophys Res 88:1153–1172. doi:10.1029/JB088iB02p01153

    Article  Google Scholar 

  • Deng H, Yan P, Liu H, Luo W (2006) Seismic data processing and the characterization of a gas hydrate bearing zone offshore of the southwestern Taiwan. TAO 17(4):781–797

    Google Scholar 

  • Deng J, Wang T, Yang B, Lee C, Liu C, Chen S (2013) Crustal velocity structure off SW Taiwan in the northernmost South China Sea imaged from TAIGER OBS and MCS data. Mar Geophy Res. doi:10.1007/s11001-013-9166-8

  • Ding W, Yang S, Chen H, Cheng X, Wu N (2006) Arc-continent collision orogeny in offshore Taiwan during Neogene. Chin J Geol 41:195–201 (in Chinese)

    Google Scholar 

  • Dominguez S, Malavieille J, Lallemand S (2000) Deformation of margins in response to seamount subduction: insights from sandbox experiments. Tectonics 19(1):182–196. doi:10.1029/1999TC900055

    Article  Google Scholar 

  • Duong NA, Thuy NN, Kimata F, Meilano I, Yen LTH (2009) Assessment of bathymetry effects on tsunami propagation in the east Vietnam Sea. Adv Nat Sci 10(4):479–489

    Google Scholar 

  • Ellis S, Beaumont C, Pfiffner OA (1999) Geodynamic models of crustal-scale episodic tectonic accretion and underplating in subduction zones. J Geophys Res 104(B7):15169–15190. doi:10.1029/1999JB900071

    Article  Google Scholar 

  • Engdahl ER, Villasenor A (2002) Global seismicity: 1900–1999. In: Lee WHK, Kanamori H, Jennings PC, Kisslinger C (eds) International handbook of earthquake and engineering seismology, Part A, Chapter 41. Academic Press, London, pp 665–690. doi:10.1016/S0074-6142(02)80244-3

    Chapter  Google Scholar 

  • Gourley JR, Byrne T, Chan YC, Wu F, Rau RJ (2007) Fault geometries illuminated from seismicity in central Taiwan: implications for crustal scale structural boundaries in the northern Central Range. Tectonophysics 445:168–185. doi:10.1016/j.tecto.2007.08.013

    Article  Google Scholar 

  • Ha DM, Tkalich P, Soon CE, Megawatif K (2009) Tsunami propagation scenarios in the South China Sea. J Asian Earth Sci 36:67–73. doi:10.1016/j.bbr.2011.03.031

    Article  Google Scholar 

  • Hall R (2002) Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions and animations. J Asian Earth Sci 20:353–434. doi:10.1016/S1367-9120(01)00069-4

    Article  Google Scholar 

  • Hall R, Ali JR, Anderson CD, Baker SJ (1995a) Origin and motion history of the Philippine Sea plate. Tectonophysics 251:229–250. doi:10.1016/0040-1951(95)00038-0

    Article  Google Scholar 

  • Hall R, Fuller M, Ali JR, Anderson CD (1995b) The Philippine Sea Plate: magnetism and reconstructions. In: Taylor B, Natland J (eds) Active margins and marginal basins of the Western Pacific. AGU, Washington, DC, pp 371–403. doi:10.1029/GM088p0371

    Chapter  Google Scholar 

  • Harding BW, Storms MA, et al (1990) Proc. ODP, Init Repts, 124E: College Station, TX (Ocean Drilling Program). Site 772, 75–89. doi:10.2973/odp.proc.ir.124E.1990

  • Hayes DE, Lewis SD (1984) A geophysical study of the Manila trench, Luzon, Philippines, 1, Crustal structure, gravity, and regional tectonic evolution. J Geophys Res 89:9171–9195. doi:10.1029/JB089iB11p09171

    Article  Google Scholar 

  • Heck NH (1947) List of seismic sea waves. Bull Seismol Soc Am 4:269–286

    Google Scholar 

  • Hsiung K, Yu H (2011) Morpho-sedimentary evidence for a canyon-channel-trench interconnection along the Taiwan-Luzon plate margins, South China Sea. Geo Mar Lett 31:215–226. doi:10.1007/s00367-010-0226-7

    Article  Google Scholar 

  • Hsu S, Sibuet J (2004) Continent-ocean transition of the northern South China Sea and off southwestern Taiwan. Mar Geophys Res 25(1–2):1–4. doi:10.1007/s11001-005-0729-1

    Article  Google Scholar 

  • Hsu S, Yeh Y, Doo W, Tsai C (2004) New bathymetry and magnetic lineations in the northernmost South China Sea and their tectonic implications. Mar Geophys Res 25:29–44. doi:10.1007/s11001-005-0731-7

    Article  Google Scholar 

  • Kao H, Huang GC, Liu CS (2000) Transition from oblique subduction to collision in the northern Luzon arc–Taiwan region: constraints from bathymetry and seismic observations. J Geophys Res 105:3059–3079. doi:10.1029/1999JB900357

    Article  Google Scholar 

  • Karig DE (1983) Accreted terranes in the northern part of the Philippine Archipelago. Tectonics 2(2):211–236. doi:10.1029/TC002i002p00211

    Article  Google Scholar 

  • Kopp H, Hindle D, Klaeschen D, Oncken O, Scholl D (2009) Anatomy of the western Java plate interface from depth-migrated seismic images. Earth Planet Sci Lett. doi:10.1016/j.epsl.2009.09.043

    Google Scholar 

  • Ku C, Hsu S (2009) Crustal structure and deformation at the northern Manila trench between Taiwan and Luzon islands. Tectonophysics 466:229–240. doi:10.1016/j.tecto.2007.11.012

    Article  Google Scholar 

  • Kuo LC, Punongbayan RS, Ramos EG (1999) GPS observation of crustal deformation in the Taiwan-Luzon Region. Geophys Res Lett 26:923–926. doi:10.1029/1999GL900148

    Article  Google Scholar 

  • Lallemand SE, Schnürle P, Malavieille J (1994) Coulomb theory applied to accretionary and nonaccretionary wedges: possible causes for tectonic erosion and/or frontal accretion. J Geophys Res 99(B6):12033–12055. doi:10.1029/94JB00124

    Article  Google Scholar 

  • Lee C, Wang T, Huang Y, Van Avendonk HJ, Lin J, Lallemand S, Klingelhoeher F (2009) Marine TAIGER OBS experiment and its future prospects. Eos Transactions, American Geophysical Union, 90(52), Fall Meet Suppl Abstract T54B–03

    Google Scholar 

  • Lewis S, Hayes DE (1983) Northward-propagating subduction along eastern Luzon, Philippine Islands. In: Hayes D (ed) The Tectonic and geologic evolution of southeast Asian Seas and Islands, 2, American Geophysical Union Geophysical Monograph Series 27, pp 57–78. doi:10.1029/GM027p0057

  • Lewis SD, Hayes DE (1984) A geophysical study of the Manila trench, Luzon, Philippines, 2, Forearc basin structural and stratigraphic evolution. J Geophys Res 89:9196–9214. doi:10.1029/JB089iB11p09196

    Article  Google Scholar 

  • Li J (2005) Evolution of China’s marginal seas and its effect of natural resources. Ocean press, Beijing

    Google Scholar 

  • Li CF, Zhou Z, Li J, Hao H, Geng J (2007) Structures of the northeasternmost South China Sea continental margin and ocean basin: geophysical constraints and tectonic implications. Mar Geophys Res 28:59–79. doi:10.1007/s11001-007-9014-9

    Article  Google Scholar 

  • Lin A, Watts A, Hesselbo S (2003) Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Res 15:453–478. doi:10.1046/j.1365-2117.2003.00215.x

    Article  Google Scholar 

  • Lin A, Yao B, Hsu S, Liu C, Huang C (2009) Tectonic features of the incipient arc-continental collision zone of Taiwan: implications for seismicity. Tectonophysics 479:28–42. doi:10.1016/j.tecto.2008.11.004

    Article  Google Scholar 

  • Liu C, Huang I, Teng L (1997) Structure features off southwestern Taiwan. Mar Geol 137:305–319. doi:10.1016/S0025-3227(96)00093-X

    Article  Google Scholar 

  • Liu C, Feng L, Chuang H, Chen L (2007) Structural variations of an cccretionary wedge in the transition zone from subduction to collision offshore southern Taiwan. Eos Transactions American Geophysical Union 88(52), Fall Meet Suppl Abstract T41D–07

    Google Scholar 

  • Ludwig WJ (1970) The Manila trench and West Luzon Trough, III, Seismic-refraction measurements. Deep Sea Res 17:553–571. doi:10.1016/j.bbr.2011.03.031

    Google Scholar 

  • Ludwig WJ, Kumar N, Houtz RE (1979) Profiler-sonobuoy measurements in the South China Sea basin. J Geophys Res 84:3505–3518. doi:10.1029/JB084iB07p03505

    Article  Google Scholar 

  • Malavieille J, Lallemand SE, Dominguez S, Deschamps A, Lu CY, Liu CS, Schnurle P, Crew AS (2002) Arc-continent collision in Taiwan: new marine observations and tectonic evolution. GSA Special Papers 358:189–213. doi:10.1130/0-8137-2358-2.187

    Google Scholar 

  • McIntosh K, Nakamura Y, Wang TK, Shih RC, Chen A, Liu CS (2005) Crustal scale seismic profiles across Taiwan and the western Philippine Sea. Tectonophysics 401:23–54. doi:10.1016/j.bbr.2011.03.031

    Article  Google Scholar 

  • McIntosh K, Van Avendonk HJ, Liu C, Lee C, Wang TK, Hsu S, Wu F (2009) Overview and early highlights of the TAIGER project marine, active-source seismic program. Eos Transactions, American Geophysical Union, 90(52), Fall Meet Suppl Abstract T54B–01

  • Mirakian D, Crespi J, Byrne T, Huang C, Ouimet W, Lewis J (2012) Tectonic implications of nonparallel topographic and structural curvature in the higher elevations of an active collision zone, Taiwan. Lithosphere 5(1):49–66. doi:10.1130/L232.1

    Article  Google Scholar 

  • Moore JC, Silver EA (1987) Continental margin tectonics: submarine accretionary prisms. Rev Geophys 25:1305–1312. doi:10.1029/RG025i006p01305

    Article  Google Scholar 

  • Moore GF, Bangs NL, Taira A, Kuramoto S, Pangborn E, Tobin HJ (2007) Three dimensional splay fault geometry and implications for tsunami generation. Science 318. doi:10.1126/science.1147195

  • Park J, Tsuru T, Kodaira S, Cummins P, Kaneda Y (2002) Splay fault branching along the Nankai subduction zone. Science 297:1157–1160. doi:10.1126/science.1074111

    Article  Google Scholar 

  • Pautot G, Rangin C (1989) Subduction of the South China Sea axial ridge below Luzon (Philippines). Earth Planet Sci Lett 92:57–69. doi:10.1016/j.bbr.2011.03.031

    Article  Google Scholar 

  • Pautot G, Rangin C, Briais A, Tapponnier P, Beuzart P, Lericolais G, Mathieu X, Wu J, Han S, Li H, Lu Y, Zhao J (1986) Spreading direction in the central South China Sea. Nature 321:150–154. doi:10.1038/321150a0

    Article  Google Scholar 

  • Ranero CR, von Huene R (2000) Subduction erosion along the Middle America convergent margin. Nature 404:748–752. doi:10.1038/35008046

    Article  Google Scholar 

  • Rangin C, Le Pichon X, Mazzotti S, Pubellier M, Chamot-Rooke N, Aurelio M, Walpersdorf A, Quebral R (1999) Plate convergence measured by GPS across the Sundaland/Phillippine Sea Plate deformed boundary: the Phillippines and eastern Indonesia. Geophys J Int 139:296–316. doi:10.1046/j.1365-246x.1999.00969.x

    Article  Google Scholar 

  • Sage F, Collot JY, Ranero CR (2006) Interplate patchiness and subduction-erosion mechanisms: evidence from depth-migrated seismic images at the central Ecuador convergent margin. Geology 34:997–1000. doi:10.1130/G22790A.1

    Article  Google Scholar 

  • Seno T, Stein S, Gripp AE (1993) A model for the motion of the Philippine Sea plate consistent with NUVEL-I and geologic data. J Geophys Res 98:17941–17948. doi:10.1029/93JB00782

    Article  Google Scholar 

  • Sibuet JC, Hsu SK, Le Pichon X, Le Formal J, Reed D, Moore G, Liu C (2002) East Asia plate tectonic since 15 Ma: constraints from Taiwan region. Tectonophysics 344:103–134. doi:10.1016/j.bbr.2011.03.031

    Article  Google Scholar 

  • Stockwell JW (1999) The CWP/SU: Seismic Un*x package. Comput Geosci 25(4):415–419. doi:10.1016/S0098-3004(98)00145-9

    Article  Google Scholar 

  • Suppe J (1984) Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan. Mem Geol Soc China 6:21–34

    Google Scholar 

  • Taylor B, Hayes DE (1980) The tectonic evolution of the South China Sea Basin. In: Hayes, DE (ed) Tectonic and geologic evolution of Southeast Asian Seas and Islands, Geophys Monogr Ser 23, AGU, Washington, DC, pp 89–104. doi:10.1029/GM027

  • Taylor B, Hayes DE (1983) Origin and history of the South China Basin. In: Hayes, DE (ed) Tectonic and geologic evolution of Southeast Asian Seas and Islands, Geophys Monogr Ser 27. AGU, Washington, DC, pp 23–56. doi:10.1029/GM027p0023

  • Teng LS (1990) Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics 183:57–76. doi:10.1016/j.bbr.2011.03.031

    Article  Google Scholar 

  • Teng LS, Lee CT, Tsai YB, Hsiao LY (2000) Slab breakoff as a mechanism for flipping of subduction polarity in Taiwan. Geology 28:155–158. doi:10.1130/0091-7613(2000

    Article  Google Scholar 

  • von Huene R, Ranero C, Vannucchi P (2004) Generic model of subduction erosion. Geology 32:913–916. doi:10.1130/G20563.1

    Article  Google Scholar 

  • Wang K, Hu Y (2006) Accretionary prisms in subduction earthquake cycles: the theory of dynamic Coulomb wedge. J Geophys Res 111:B06410. doi:10.1029/2005JB004094

    Google Scholar 

  • Wessel P, Smith WHF (1991) Free software helps map and display data. EOS Trans Am Geophys Union 72:445–446. doi:10.1029/90EO00319

    Google Scholar 

  • Wu FT, Lavier LL, Taiger Teams (2007) Collision tectonics of Taiwan and TAIGER Experiments. Eos Transactions, American Geophysical Union, 88(52), Fall Meet Suppl Abstract T51A–0321

  • Wu FT, Liang WT, Lee JC, Benz H, Villasenor A (2009a) A model for the termination of the Ryukyu subduction zone against Taiwan: a junction of collision, subduction/separation, and subduction boundaries. J Geophys Res 114:B07404. doi:10.1029/2008JB005950

    Google Scholar 

  • Wu FT, Kuo-Chen H, Lavier LL, Unsworth MJ, Bertrand EA (2009b) Toward a tectonic synthesis of Taiwan with TAIGER data. Eos Transactions, American Geophysical Union, 90(52), Fall Meet Suppl Abstract T52C–05

    Google Scholar 

  • Zhu J, Qiu X, Zhan W, Xu H, Sun L (2005) Focal mechanism solutions and its tectonic significance in the trench of the eastern South China Sea. Acta Seismol Sin 18:280–289. doi:10.1007/s11589-005-0076-y

    Article  Google Scholar 

  • Zhu J, Kopp H, Flueh ER, Klaeschen D, Papenberg C, Planert L (2009) Crustal structure of the central Costa Rica subduction zone: implications for basal erosion from seismic wide-angle data. Geophys J Int 178:1112–1131. doi:10.1111/j.1365-246X.2009.04208.x

    Article  Google Scholar 

Download references

Acknowledgments

We thank the crew members of the R/V Tanbao for their efforts for collecting the Line 973 seismic data. We used the GMT software (Wessel and Smith 1991) and Seismic Unix software package (Stockwell 1999) to plot several figures. Reviews by guest Editor Peter Clift and two anonymous reviewers greatly improved the manuscript. This study has been supported by the National Nature Science Foundation of China (Grant No.: 41176054 and Grant No.: 41006030) and the Knowledge Innovation Program of the Chinese Academy of Sciences (SQ200910), and the Joint Funds of the National Natural Science Foundation of China and Guangdong province (Grand No.: U0933006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjiang Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Sun, Z., Kopp, H. et al. Segmentation of the Manila subduction system from migrated multichannel seismics and wedge taper analysis. Mar Geophys Res 34, 379–391 (2013). https://doi.org/10.1007/s11001-013-9175-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11001-013-9175-7

Keywords

Navigation