Skip to main content
Log in

Effects of the concentrated mass and elastic support on dynamic and flutter behaviors of panel structures

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

To research impacts of mass points and elastic supports on dynamic and aeroelastic properties of plate structures, a unified dynamic model concerning the plate structures with concentrated mass point or elastic support subjected to supersonic airflow is established in this paper. The energy approach is utilized to deduce energy functions of the dynamic system, and the nonlinear dynamic equations are further formulated based on the variational principle. Furthermore, several numerical calculations are implemented to validate the proposed formulations, and satisfactory agreements are exhibited between the calculated vibration and flutter solutions and data from the software and literature. Subsequently, impacts of the mass point and elastic support on vibration and flutter properties of panel structures are also presented and the detailed mechanisms are explained. It can be found that aeroelastic stability properties of panel structures are significantly raised with the location of the concentrated mass point or elastic support placed reasonably. This study provides a simple method for the flutter suppression of plates, which can be used in the mechanical design of these plate structures for the better dynamic performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Data availability data will be made available on request.

References

  • Amirzadegan, S., Dowell, E.H.: Correlation of experimental and computational results for flutter of streamwise curved plate. AIAA J. 57(8), 3556–3561 (2019)

    Article  Google Scholar 

  • Cao, D.Q., Zhao, N.: Active control of supersonic/hypersonic aeroelastic flutter for a two-dimensional airfoil with flap. Sci. China Technol. Sc. 54(8), 1943–1953 (2011)

    Article  Google Scholar 

  • Chai, Y.Y., Song, Z.G., Li, F.M.: Active aerothermoelastic flutter suppression of composite laminated panels with time-dependent boundaries. Comput. Struct. 179, 61–76 (2017a)

    Article  Google Scholar 

  • Chai, Y.Y., Song, Z.G., Li, F.M.: Investigations on the influences of elastic foundations on the aerothermoelastic flutter and thermal buckling properties of lattice sandwich panels in supersonic airflow. Acta Astronaut. 140, 176–189 (2017b)

    Article  Google Scholar 

  • Cunha-Filho, A.G., De Lima, A.M.G., Donadon, M.V.: Flutter suppression of plates subjected to supersonic flow using passive constrained viscoelastic layers and Golla–Hughes–McTavish method. Aerosp. Sci. Technol. 52, 70–80 (2016a)

    Article  Google Scholar 

  • Cunha-Filho, A.G., De Lima, A.M.G., Donadon, M.V., Leão, L.S.: Flutter suppression of plates using passive constrained viscoelastic layers. Mech. Syst. Signal. Pr. 79, 99–111 (2016b)

    Article  Google Scholar 

  • Dowell, E.H.: Nonlinear oscillations of a fluttering plate. AIAA J. 4(7), 1267–1275 (1966)

    Article  Google Scholar 

  • Eshmatov, B.K., Eshmatov, K., Khodzhaev, D.A.: Nonlinear flutter of viscoelastic rectangular plates and cylindrical panels of a composite with a concentrated masses. J. Appl. Mech. Tech. Phys. 54(4), 578–587 (2013)

    Article  MathSciNet  Google Scholar 

  • Fazelzadeh, S.A., Mazidi, A., Kalantari, H.: Bending-torsional flutter of wings with an attached mass subjected to a follower force. J. Sound Vib. 323(1–2), 148–162 (2009)

    Article  Google Scholar 

  • Fazelzadeh, S.A., Eghtesad, M., Azadi, M.: Buckling and flutter of a column enhanced by piezoelectric layers and lumped mass under a follower force. Int. J. Struct. Stab. Dyn. 10(05), 1083–1097 (2010)

    Article  MathSciNet  Google Scholar 

  • Freydin, M., Dowell, E.H., Spottswood, S.M., Perez, R.A.: Nonlinear dynamics and flutter of plate and cavity in response to supersonic wind tunnel start. Nonlinear Dyn. 103(4), 3019–3036 (2021)

    Article  Google Scholar 

  • Ghoman, S.S., Azzouz, M.: Supersonic aerothermoelastic nonlinear flutter study of curved panels: frequency domain. J. Aircraft 49(4), 1075–1090 (2012)

    Article  Google Scholar 

  • Grover, N., Singh, B.N., Maiti, D.K.: An inverse trigonometric shear deformation theory for supersonic flutter characteristics of multilayered composite plates. Aerosp. Sci. Technol. 52, 41–51 (2016)

    Article  Google Scholar 

  • Howell, R.M., Lucey, A.D.: Energy production characteristics of a spring-mounted cantilevered-free flexible plate in a uniform flow. Fluids Eng. Div. Summer Meet. Am. Soc. Mech. Eng. 44755, 1455–1463 (2012)

    Google Scholar 

  • Howell, R.M., Lucey, A.D.: Flutter of spring-mounted flexible plates in uniform flow. J. Fluid Struct. 59, 370–393 (2015)

    Article  Google Scholar 

  • Howell, R.M., Lucey, A.D., Pitman, M.W.: The effect of inertial inhomogeneity on the flutter of a cantilevered flexible plate. J. Fluid Struct. 27(3), 383–393 (2011)

    Article  Google Scholar 

  • Howell, R.M., Lucey, A. D.: Flutter of a nonlinear-spring-mounted flexible plate for applications in energy harvesting. In: 20th Australasian Fluid Mechanics Conference, pp. 5–8 (2016)

  • Huang, L., Zhang, C.: Modal analysis of cantilever plate flutter. J. Fluid Struct. 38, 273–289 (2013)

    Article  Google Scholar 

  • Ibrahim, H.H., Yoo, H.H., Lee, K.S.: Aero-thermo-mechanical characteristics of imperfect shape memory alloy hybrid composite panels. J. Sound Vib. 325(3), 583–596 (2009a)

    Article  Google Scholar 

  • Ibrahim, H.H., Yoo, H.H., Lee, K.S.: Supersonic flutter of functionally graded panels subject to acoustic and thermal loads. J. Aircraft 46(2), 593–600 (2009b)

    Article  Google Scholar 

  • Jin, G., Ye, T., Su, Z.: Structural Vibration: A Uniform Accurate Solution for Laminated Beams, Plates and Shells with General Boundary Conditions. Science Press, Beijing (2015)

    Book  Google Scholar 

  • Kassem, M., Yang, Z., Gu, Y., Wang, W., Safwat, E.: Active dynamic vibration absorber for flutter suppression. J. Sound Vib. 469, 115110 (2020)

    Article  Google Scholar 

  • Kuo, S.Y.: Aerothermoelastic analysis of composite laminates with variable fiber spacing. Comput. Mater. Sci. 91, 83–90 (2014)

    Article  Google Scholar 

  • Li, F.M.: Active aeroelastic flutter suppression of a supersonic plate with piezoelectric material. Int. J. Eng. Sci. 51, 190–203 (2012)

    Article  MathSciNet  Google Scholar 

  • Li, F.M., Song, Z.G.: Active aeroelastic flutter analysis and vibration control of supersonic composite laminated plate. Compos. Struct. 94(2), 702–713 (2012)

    Article  Google Scholar 

  • Li, F.M., Song, Z.G.: Flutter and thermal buckling control for composite laminated panels in supersonic flow. J. Sound Vib. 332(22), 5678–5695 (2013)

    Article  Google Scholar 

  • Li, F.M., Song, Z.G.: Aeroelastic flutter analysis for 2D Kirchhoff and Mindlin panels with different boundary conditions in supersonic airflow. Acta Mech. 225(12), 3339–3351 (2014)

    Article  MathSciNet  Google Scholar 

  • Liew, K.M., Wang, C.M., Xiang, Y., Kitipornchai, S.: Vibration of Mindlin Plates: Programming the p-Version Ritz Method. Elsevier, Oxford (1998)

    Google Scholar 

  • Marques, F.D., Natarajan, S., Ferreira, A.J.M.: Evolutionary-based aeroelastic tailoring of stiffened laminate composite panels in supersonic flow regime. Compos. Struct. 167, 30–37 (2017)

    Article  Google Scholar 

  • Navazi, H.M., Haddadpour, H.: Nonlinear aero-thermoelastic analysis of homogeneous and functionally graded plates in supersonic airflow using coupled models. Compos. Struct. 93(10), 2554–2565 (2011)

    Article  Google Scholar 

  • Pacheco, D.R., Marques, F.D., Ferreira, A.J.: Panel flutter suppression with nonlinear energy sinks: numerical modeling and analysis. Int. J. Nonlinear Mech. 106, 108–114 (2018)

    Article  Google Scholar 

  • Prakash, T., Ganapathi, M.: Supersonic flutter characteristics of functionally graded flat panels including thermal effects. Compos. Struct. 72(1), 10–18 (2006)

    Article  Google Scholar 

  • Samadpour, M., Asadi, H., Wang, Q.: Nonlinear aero-thermal flutter postponement of supersonic laminated composite beams with shape memory alloys. Eur. J. Mech. A Solid 57, 18–28 (2016)

    Article  MathSciNet  Google Scholar 

  • Shao, C., Cao, D., Xu, Y., Zhao, H.: Flutter and thermal buckling analysis for composite laminated panel embedded with shape memory alloy wires in supersonic flow. Int. J. Aerosp. Eng. 7, 1–12 (2016)

    Article  Google Scholar 

  • Song, Z.G., Li, F.M.: Investigations on the flutter properties of supersonic panels with different boundary conditions. Int. J. Dyn. Cont. 2(3), 346–353 (2014)

    Article  Google Scholar 

  • Song, Z.G., Li, F.M.: Flutter and buckling characteristics and active control of sandwich panels with triangular lattice core in supersonic airflow. Compos. B Eng. 108, 334–344 (2017)

    Article  Google Scholar 

  • Sun, Q., Xing, Y.F.: Exact eigensolutions for flutter of two-dimensional symmetric cross-ply composite laminates at high supersonic speeds. Compos. Struct. 183, 358–370 (2018)

    Article  Google Scholar 

  • Sun, Y., Song, Z., Ma, W.: Influence mechanism of lumped masses on the flutter behavior of structures. Aerosp. Sci. Technol. 111, 106524 (2021)

    Article  Google Scholar 

  • Tan, B.H., Lucey, A.D., Howell, R.M.: Aero-/hydro-elastic stability of flexible panels: prediction and control using localised spring support. J. Sound Vib. 332(26), 7033–7054 (2013)

    Article  Google Scholar 

  • Tian, W., Li, Y., Li, P., Yang, Z.C., Zhao, T.: Passive control of nonlinear aeroelasticity in hypersonic 3-D wing with a nonlinear energy sink. J. Sound. Vib. 462, 114942 (2019)

    Article  Google Scholar 

  • Torabi, K., Afshari, H.: Optimization of flutter boundaries of cantilevered trapezoidal functionally graded sandwich plates. J Sandw Struct Mater1099636217697492 (2017)

  • Torabi, K., Afshari, H., Aboutalebi, F.H.: Vibration and flutter analyses of cantilever trapezoidal honeycomb sandwich plates. J. Sandw. Struct. Mater. 1099636217728746 (2017)

  • Wei, Z., Yin, X., Yu, S., Wu, W.: Dynamic stiffness formulation for transverse and in-plane vibration of rectangular plates with arbitrary boundary conditions based on a generalized superposition method. Int. J. Mech. Mater. Des. 17, 119–135 (2021)

    Article  Google Scholar 

  • Zhao, H., Cao, D.: Supersonic flutter of laminated composite panel in coupled multi-fields. Aerosp. Sci. Technol. 47, 75–85 (2015)

    Article  Google Scholar 

  • Zhou, K., Su, J., Hua, H.: Aero-thermo-elastic flutter analysis of supersonic moderately thick orthotropic plates with general boundary conditions. Int. J. Mech. Sci. 141, 46–57 (2018)

    Article  Google Scholar 

  • Zhou, J., Xu, M., Zha, J., Yang, Z.C.: The suppression of nonlinear panel flutter response at elevated temperatures using a nonlinear energy sink. Meccanica 56(1), 41–57 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude for the financial support received from the National Natural Science Foundation of China (No. 52005325), Fundamental Research Funds for the Central Universities (No. 22120220558), Research Project of State Key Laboratory of Mechanical System and Vibration (No. MSV202301) and Fundamental Science on Vibration, Shock & Noise Laboratory (No. VSN202201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zhou.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The displacements of the panel structure are

$$\begin{gathered} u_{0} (x,y,t) = {\mathbf{H}}_{u} {\mathbf{q}}_{1} \hfill \\ v_{0} (x,y,t) = {\mathbf{H}}_{v} {\mathbf{q}}_{2} \hfill \\ w_{0} (x,y,t) = {\mathbf{H}}_{w} {\mathbf{q}}_{3} \hfill \\ \varphi_{0x} (x,y,t) = {\mathbf{H}}_{x} {\mathbf{q}}_{4} \hfill \\ \varphi_{0y} (x,y,t) = {\mathbf{H}}_{y} {\mathbf{q}}_{5} \hfill \\ \end{gathered}$$
(19)

The detailed expressions in these matrices of the panel structures are derived as

$${\mathbf{K}}^{l} = \left[ {\begin{array}{*{20}c} {{\mathbf{K}}_{uu} } & {{\mathbf{K}}_{uv} } & {\mathbf{0}} & {{\mathbf{K}}_{ux} } & {{\mathbf{K}}_{uy} } \\ {{\mathbf{K}}_{uv}^{{\text{T}}} } & {{\mathbf{K}}_{vv} } & {\mathbf{0}} & {{\mathbf{K}}_{vx} } & {{\mathbf{K}}_{vy} } \\ {\mathbf{0}} & {\mathbf{0}} & {{\mathbf{K}}_{ww} } & {{\mathbf{K}}_{wx} } & {{\mathbf{K}}_{wy} } \\ {{\mathbf{K}}_{ux}^{{\text{T}}} } & {{\mathbf{K}}_{vx}^{{\text{T}}} } & {{\mathbf{K}}_{wx}^{{\text{T}}} } & {{\mathbf{K}}_{xx} } & {{\mathbf{K}}_{xy} } \\ {{\mathbf{K}}_{uy}^{{\text{T}}} } & {{\mathbf{K}}_{vy}^{{\text{T}}} } & {{\mathbf{K}}_{wy}^{{\text{T}}} } & {{\mathbf{K}}_{xy}^{{\text{T}}} } & {{\mathbf{K}}_{yy} } \\ \end{array} } \right]$$
(20)
$${\mathbf{K}}^{nl} = \left[ {\begin{array}{*{20}c} {\mathbf{0}} & {\mathbf{0}} & {{\mathbf{K}}_{uw}^{nl} } & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {{\mathbf{K}}_{vw}^{nl} } & {\mathbf{0}} & {\mathbf{0}} \\ {{\mathbf{K}}_{wu}^{nl} } & {{\mathbf{K}}_{wv}^{nl} } & {{\mathbf{K}}_{ww}^{nl} } & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ \end{array} } \right]$$
(21)
$$\begin{aligned} {\mathbf{K}}_{uu} & = \int_{0}^{{L_{1} }} {\int_{0}^{{L_{2} }} {\left[ \begin{gathered} A_{11} \left( {\frac{{\partial {\mathbf{H}}_{u} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{u} }}{\partial x}} \right) + A_{66} \left( {\frac{{\partial {\mathbf{H}}_{u} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{u} }}{\partial y}} \right) \hfill \\ + A_{16} \left( {\frac{{\partial {\mathbf{H}}_{u} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{u} }}{\partial x}} \right) + A_{16} \left( {\frac{{\partial {\mathbf{H}}_{u} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{u} }}{\partial y}} \right) \hfill \\ \end{gathered} \right]} } dxdy \\ & \quad + \int_{0}^{{L_{1} }} {\left( {\left. {k_{uy0} {\mathbf{H}}_{u}^{{\text{T}}} {\mathbf{H}}_{u} } \right|_{y = 0} + \left. {k_{{uyL_{2} }} {\mathbf{H}}_{u}^{{\text{T}}} {\mathbf{H}}_{u} } \right|_{{y = L_{2} }} } \right)} dx \\ & \quad + \int_{0}^{{L_{2} }} {\left( {\left. {k_{ux0} {\mathbf{H}}_{u}^{{\text{T}}} {\mathbf{H}}_{u} } \right|_{x = 0} + \left. {k_{{uxL_{1} }} {\mathbf{H}}_{u}^{{\text{T}}} {\mathbf{H}}_{u} } \right|_{{x = L_{1} }} } \right)} dy \\ \end{aligned}$$
(22)
$${\mathbf{K}}_{uv} = \int_{0}^{{L_{1} }} {\int_{0}^{{L_{2} }} {\left[ \begin{gathered} A_{12} \left( {\frac{{\partial {\mathbf{H}}_{u} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{v} }}{\partial y}} \right) + A_{66} \left( {\frac{{\partial {\mathbf{H}}_{u} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{v} }}{\partial x}} \right) \hfill \\ + A_{16} \left( {\frac{{\partial {\mathbf{H}}_{u} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{v} }}{\partial x}} \right) + A_{26} \left( {\frac{{\partial {\mathbf{H}}_{u} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{v} }}{\partial y}} \right) \hfill \\ \end{gathered} \right]} } dxdy$$
(23)
$${\mathbf{K}}_{ux} = \int_{0}^{{L_{1} }} {\int_{0}^{{L_{2} }} {\left[ \begin{gathered} B_{11} \left( {\frac{{\partial {\mathbf{H}}_{u} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{x} }}{\partial x}} \right) + B_{66} \left( {\frac{{\partial {\mathbf{H}}_{u} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{x} }}{\partial y}} \right) \hfill \\ + B_{16} \left( {\frac{{\partial {\mathbf{H}}_{u} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{x} }}{\partial x}} \right) + B_{16} \left( {\frac{{\partial {\mathbf{H}}_{u} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{x} }}{\partial y}} \right) \hfill \\ \end{gathered} \right]} } dxdy$$
(24)
$${\mathbf{K}}_{uy} = \int_{0}^{{L_{1} }} {\int_{0}^{{L_{2} }} {\left[ \begin{gathered} B_{12} \left( {\frac{{\partial {\mathbf{H}}_{u} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{y} }}{\partial y}} \right) + B_{66} \left( {\frac{{\partial {\mathbf{H}}_{u} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{y} }}{\partial x}} \right) \hfill \\ + B_{16} \left( {\frac{{\partial {\mathbf{H}}_{u} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{y} }}{\partial x}} \right) + B_{26} \left( {\frac{{\partial {\mathbf{H}}_{u} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{y} }}{\partial y}} \right) \hfill \\ \end{gathered} \right]} } dxdy$$
(25)
$$\begin{aligned} {\mathbf{K}}_{vv} & = \int_{0}^{{L_{1} }} {\int_{0}^{{L_{2} }} {\left[ \begin{gathered} A_{22} \left( {\frac{{\partial {\mathbf{H}}_{v} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{v} }}{\partial y}} \right) + A_{66} \left( {\frac{{\partial {\mathbf{H}}_{v} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{v} }}{\partial x}} \right) \hfill \\ + A_{26} \left( {\frac{{\partial {\mathbf{H}}_{v} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{v} }}{\partial y}} \right) + A_{26} \left( {\frac{{\partial {\mathbf{H}}_{v} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{v} }}{\partial x}} \right) \hfill \\ \end{gathered} \right]} } dxdy \\ & \quad + \int_{0}^{{L_{1} }} {\left( {\left. {k_{vy0} {\mathbf{H}}_{v}^{{\text{T}}} {\mathbf{H}}_{v} } \right|_{y = 0} + \left. {k_{{vyL_{2} }} {\mathbf{H}}_{v}^{{\text{T}}} {\mathbf{H}}_{v} } \right|_{{y = L_{2} }} } \right)} dx \\ & \quad + \int_{0}^{{L_{2} }} {\left( {\left. {k_{vx0} {\mathbf{H}}_{v}^{{\text{T}}} {\mathbf{H}}_{v} } \right|_{x = 0} + \left. {k_{{vxL_{1} }} {\mathbf{H}}_{v}^{{\text{T}}} {\mathbf{H}}_{v} } \right|_{{x = L_{1} }} } \right)} dy \\ \end{aligned}$$
(26)
$${\mathbf{K}}_{vx} = \int_{0}^{{L_{1} }} {\int_{0}^{{L_{2} }} {\left[ \begin{gathered} B_{12} \left( {\frac{{\partial {\mathbf{H}}_{v} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{x} }}{\partial x}} \right) + B_{66} \left( {\frac{{\partial {\mathbf{H}}_{v} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{x} }}{\partial y}} \right) \hfill \\ + B_{16} \left( {\frac{{\partial {\mathbf{H}}_{v} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{x} }}{\partial x}} \right) + B_{26} \left( {\frac{{\partial {\mathbf{H}}_{v} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{x} }}{\partial y}} \right) \hfill \\ \end{gathered} \right]} } dxdy$$
(27)
$${\mathbf{K}}_{vy} = \int_{0}^{{L_{1} }} {\int_{0}^{{L_{2} }} {\left[ \begin{gathered} B_{22} \left( {\frac{{\partial {\mathbf{H}}_{v} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{y} }}{\partial y}} \right) + B_{66} \left( {\frac{{\partial {\mathbf{H}}_{v} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{y} }}{\partial x}} \right) \hfill \\ + B_{26} \left( {\frac{{\partial {\mathbf{H}}_{v} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{y} }}{\partial y}} \right) + B_{26} \left( {\frac{{\partial {\mathbf{H}}_{v} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{y} }}{\partial x}} \right) \hfill \\ \end{gathered} \right]} } dxdy$$
(28)
$$\begin{aligned} {\mathbf{K}}_{ww} & = \int_{0}^{{L_{1} }} {\int_{0}^{{L_{2} }} {\left[ \begin{gathered} K_{s} A_{44} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right) + K_{s} A_{55} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right) \hfill \\ + K_{s} A_{45} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right) + K_{s} A_{45} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right) \hfill \\ \end{gathered} \right]} } dxdy \\ & \quad + \int_{0}^{{L_{1} }} {\left( {\left. {k_{wy0} {\mathbf{H}}_{w}^{{\text{T}}} {\mathbf{H}}_{w} } \right|_{y = 0} + \left. {k_{{wyL_{2} }} {\mathbf{H}}_{w}^{{\text{T}}} {\mathbf{H}}_{w} } \right|_{{y = L_{2} }} } \right)} dx \\ & \quad + \int_{0}^{{L_{2} }} {\left( {\left. {k_{wx0} {\mathbf{H}}_{w}^{{\text{T}}} {\mathbf{H}}_{w} } \right|_{x = 0} + \left. {k_{{wxL_{1} }} {\mathbf{H}}_{w}^{{\text{T}}} {\mathbf{H}}_{w} } \right|_{{x = L_{1} }} } \right)} dy \\ & \quad + \int_{0}^{{L_{1} }} {\int_{0}^{{L_{2} }} {\left[ {\frac{{\lambda D_{1}^{{1}} }}{{L_{1}^{3} }}\left( {{\mathbf{H}}_{w}^{{\text{T}}} \frac{{\partial {\mathbf{H}}_{w} }}{\partial x}{\text{cos}}\theta_{air} + {\mathbf{H}}_{w}^{{\text{T}}} \frac{{\partial {\mathbf{H}}_{w} }}{\partial y}{\text{sin}}\theta_{air} } \right)} \right]} } dxdy \\ & \quad + k_{ps} {\mathbf{H}}_{w}^{{\text{T}}} {\mathbf{H}}_{w} \left| {_{{x = x_{p} ,{\kern 1pt} {\kern 1pt} y = y_{p} }} } \right. \\ \end{aligned}$$
(29)
$${\mathbf{K}}_{wx} = \int_{0}^{{L_{1} }} {\int_{0}^{{L_{2} }} {\left[ {K_{s} A_{55} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right)^{{\text{T}}} ({\mathbf{H}}_{x} ) + K_{s} A_{45} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right)^{{\text{T}}} ({\mathbf{H}}_{x} )} \right]} } dxdy$$
(30)
$${\mathbf{K}}_{wy} = \int_{0}^{{L_{1} }} {\int_{0}^{{L_{2} }} {\left[ {K_{s} A_{44} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right)^{{\text{T}}} ({\mathbf{H}}_{y} ) + K_{s} A_{45} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right)^{{\text{T}}} ({\mathbf{H}}_{y} )} \right]} } dxdy$$
(31)
$$\begin{aligned} {\mathbf{K}}_{xx} & = \int_{0}^{{L_{1} }} {\int_{0}^{{L_{2} }} {\left[ \begin{gathered} K_{s} A_{55} ({\mathbf{H}}_{x} )^{{\text{T}}} ({\mathbf{H}}_{x} ) + D_{11} \left( {\frac{{\partial {\mathbf{H}}_{x} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{x} }}{\partial x}} \right) + D_{66} \left( {\frac{{\partial {\mathbf{H}}_{x} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{x} }}{\partial y}} \right) \hfill \\ + D_{16} \left( {\frac{{\partial {\mathbf{H}}_{x} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{x} }}{\partial y}} \right) + D_{16} \left( {\frac{{\partial {\mathbf{H}}_{x} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{x} }}{\partial x}} \right) \hfill \\ \end{gathered} \right]} } dxdy \\ & \quad + \int_{0}^{{L_{1} }} {\left( {\left. {k_{xy0} {\mathbf{H}}_{x}^{{\text{T}}} {\mathbf{H}}_{x} } \right|_{y = 0} + \left. {k_{{xyL_{2} }} {\mathbf{H}}_{x}^{{\text{T}}} {\mathbf{H}}_{x} } \right|_{{y = L_{2} }} } \right)} dx \\ & \quad + \int_{0}^{{L_{2} }} {\left( {\left. {k_{xx0} {\mathbf{H}}_{x}^{{\text{T}}} {\mathbf{H}}_{x} } \right|_{x = 0} + \left. {k_{{xxL_{1} }} {\mathbf{H}}_{x}^{{\text{T}}} {\mathbf{H}}_{x} } \right|_{{x = L_{1} }} } \right)} dy \\ \end{aligned}$$
(32)
$${\mathbf{K}}_{xy} = \int_{0}^{{L_{1} }} {\int_{0}^{{L_{2} }} {\left[ \begin{gathered} K_{s} A_{45} ({\mathbf{H}}_{x} )^{{\text{T}}} ({\mathbf{H}}_{y} ) + D_{12} \left( {\frac{{\partial {\mathbf{H}}_{x} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{y} }}{\partial y}} \right) + D_{66} \left( {\frac{{\partial {\mathbf{H}}_{x} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{y} }}{\partial x}} \right) \hfill \\ + D_{16} \left( {\frac{{\partial {\mathbf{H}}_{x} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{y} }}{\partial x}} \right) + D_{26} \left( {\frac{{\partial {\mathbf{H}}_{x} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{y} }}{\partial y}} \right) \hfill \\ \end{gathered} \right]} } dxdy$$
(33)
$$\begin{aligned} {\mathbf{K}}_{yy} & = \int_{0}^{{L_{1} }} {\int_{0}^{{L_{2} }} {\left[ \begin{gathered} K_{s} A_{44} ({\mathbf{H}}_{y} )^{{\text{T}}} ({\mathbf{H}}_{y} ) + D_{22} \left( {\frac{{\partial {\mathbf{H}}_{y} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{y} }}{\partial y}} \right) + D_{66} \left( {\frac{{\partial {\mathbf{H}}_{y} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{y} }}{\partial x}} \right) \hfill \\ + D_{26} \left( {\frac{{\partial {\mathbf{H}}_{y} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{y} }}{\partial y}} \right) + D_{26} \left( {\frac{{\partial {\mathbf{H}}_{y} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{y} }}{\partial x}} \right) \hfill \\ \end{gathered} \right]} } dxdy \\ & \quad + \int_{0}^{{L_{1} }} {\left( {\left. {k_{yy0} {\mathbf{H}}_{y}^{{\text{T}}} {\mathbf{H}}_{y} } \right|_{y = 0} + \left. {k_{{yyL_{2} }} {\mathbf{H}}_{y}^{{\text{T}}} {\mathbf{H}}_{y} } \right|_{{y = L_{2} }} } \right)} dx \\ & \quad + \int_{0}^{{L_{2} }} {\left( {\left. {k_{yx0} {\mathbf{H}}_{y}^{{\text{T}}} {\mathbf{H}}_{y} } \right|_{x = 0} + \left. {k_{{yxL_{1} }} {\mathbf{H}}_{y}^{{\text{T}}} {\mathbf{H}}_{y} } \right|_{{x = L_{1} }} } \right)} dy \\ \end{aligned}$$
(34)
$${\mathbf{K}}_{uw}^{nl} = \int_{0}^{{L_{1} }} {\int_{0}^{{L_{2} }} {\left[ \begin{gathered} A_{66} \left( {\frac{{\partial {\mathbf{H}}_{u} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right){\mathbf{q}}_{3} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right) + \frac{{A_{11} }}{2}\left( {\frac{{\partial {\mathbf{H}}_{u} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right){\mathbf{q}}_{3} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right) \hfill \\ + \frac{{A_{12} }}{2}\left( {\frac{{\partial {\mathbf{H}}_{u} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right){\mathbf{q}}_{3} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right) \hfill \\ \end{gathered} \right]} } dxdy$$
(35)
$${\mathbf{K}}_{wu}^{nl} = \int_{0}^{{L_{1} }} {\int_{0}^{{L_{2} }} {\left[ \begin{gathered} A_{66} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right)^{{\text{T}}} {\mathbf{q}}_{3}^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{u} }}{\partial y}} \right) + A_{66} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right)^{{\text{T}}} {\mathbf{q}}_{3}^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{u} }}{\partial y}} \right) \hfill \\ + A_{11} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right)^{{\text{T}}} {\mathbf{q}}_{3}^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{u} }}{\partial x}} \right) + A_{12} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right)^{{\text{T}}} {\mathbf{q}}_{3}^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{u} }}{\partial x}} \right) \hfill \\ \end{gathered} \right]} } dxdy$$
(36)
$${\mathbf{K}}_{vw}^{nl} = \int_{0}^{{L_{1} }} {\int_{0}^{{L_{2} }} {\left[ \begin{gathered} A_{66} \left( {\frac{{\partial {\mathbf{H}}_{v} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right){\mathbf{q}}_{3} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right) + \frac{{A_{22} }}{2}\left( {\frac{{\partial {\mathbf{H}}_{v} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right){\mathbf{q}}_{3} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right) \hfill \\ + \frac{{A_{12} }}{2}\left( {\frac{{\partial {\mathbf{H}}_{v} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right){\mathbf{q}}_{3} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right) \hfill \\ \end{gathered} \right]} } dxdy$$
(37)
$${\mathbf{K}}_{wv}^{nl} = \int_{0}^{{L_{1} }} {\int_{0}^{{L_{2} }} {\left[ \begin{gathered} A_{66} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right)^{{\text{T}}} {\mathbf{q}}_{3}^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{v} }}{\partial x}} \right) + A_{66} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right)^{{\text{T}}} {\mathbf{q}}_{3}^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{v} }}{\partial x}} \right) \hfill \\ + A_{22} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right)^{{\text{T}}} {\mathbf{q}}_{3}^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{v} }}{\partial y}} \right) + A_{12} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right)^{{\text{T}}} {\mathbf{q}}_{3}^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{v} }}{\partial y}} \right) \hfill \\ \end{gathered} \right]} } dxdy$$
(38)
$${\mathbf{K}}_{ww}^{nl} = \int_{0}^{{L_{1} }} {\int_{0}^{{L_{2} }} {\left[ \begin{gathered} \frac{{A_{11} }}{2}\left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right){\mathbf{q}}_{3} {\mathbf{q}}_{3}^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right) + \frac{{A_{22} }}{2}\left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right){\mathbf{q}}_{3} {\mathbf{q}}_{3}^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right) \hfill \\ + \frac{{A_{12} }}{2}\left( {\left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right){\mathbf{q}}_{3} {\mathbf{q}}_{3}^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right) + \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right){\mathbf{q}}_{3} {\mathbf{q}}_{3}^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right)} \right) \hfill \\ + A_{66} \left( {\left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right){\mathbf{q}}_{3} {\mathbf{q}}_{3}^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right) + \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial y}} \right){\mathbf{q}}_{3} {\mathbf{q}}_{3}^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right)^{{\text{T}}} \left( {\frac{{\partial {\mathbf{H}}_{w} }}{\partial x}} \right)} \right) \hfill \\ \end{gathered} \right]} } dxdy$$
(39)

The rigidity parameters are given as

$$\begin{aligned} A_{ij} & = \sum\limits_{k = 1}^{n} {\overline{Q}_{ij} } (z_{k + 1} - z_{k} ),\quad B_{ij} = \frac{1}{2}\sum\limits_{k = 1}^{n} {\overline{Q}_{ij} } \left( {z_{k + 1}^{2} - z_{k}^{2} } \right), \\ D_{ij} & = \frac{1}{3}\sum\limits_{k = 1}^{n} {\overline{Q}_{ij} } \left( {z_{k + 1}^{3} - z_{k}^{3} } \right). \\ \end{aligned}$$
$${\mathbf{M}} = \left[ {\begin{array}{*{20}c} {{\mathbf{M}}_{uu} } & {\mathbf{0}} & {\mathbf{0}} & {{\mathbf{M}}_{ux} } & {\mathbf{0}} \\ {\mathbf{0}} & {{\mathbf{M}}_{vv} } & {\mathbf{0}} & {\mathbf{0}} & {{\mathbf{M}}_{vy} } \\ {\mathbf{0}} & {\mathbf{0}} & {{\mathbf{M}}_{ww} } & {\mathbf{0}} & {\mathbf{0}} \\ {{\mathbf{M}}_{ux}^{{\text{T}}} } & {\mathbf{0}} & {\mathbf{0}} & {{\mathbf{M}}_{xx} } & {\mathbf{0}} \\ {\mathbf{0}} & {{\mathbf{M}}_{vy}^{{\text{T}}} } & {\mathbf{0}} & {\mathbf{0}} & {{\mathbf{M}}_{yy} } \\ \end{array} } \right]$$
(40)
$${\mathbf{M}}_{uu} = \int_{0}^{{L_{1} }} {\int_{0}^{{L_{2} }} {I_{0} ({\mathbf{H}}_{u} )^{{\text{T}}} ({\mathbf{H}}_{u} )} } dxdy + m_{s} {\mathbf{H}}_{u}^{{\text{T}}} {\mathbf{H}}_{u} \left| {_{{x = x_{m} ,{\kern 1pt} {\kern 1pt} y = y_{m} }} } \right.$$
(41)
$${\mathbf{M}}_{ux} = \int_{0}^{{L_{1} }} {\int_{0}^{{L_{2} }} {I_{1} ({\mathbf{H}}_{u} )^{{\text{T}}} ({\mathbf{H}}_{x} )} } dxdy$$
(42)
$${\mathbf{M}}_{vv} = \int_{0}^{{L_{1} }} {\int_{0}^{{L_{2} }} {I_{0} ({\mathbf{H}}_{v} )^{{\text{T}}} ({\mathbf{H}}_{v} )} } dxdy + m_{s} {\mathbf{H}}_{v}^{{\text{T}}} {\mathbf{H}}_{v} \left| {_{{x = x_{m} ,{\kern 1pt} {\kern 1pt} y = y_{m} }} } \right.$$
(43)
$${\mathbf{M}}_{vy} = \int_{0}^{{L_{1} }} {\int_{0}^{{L_{2} }} {I_{1} ({\mathbf{H}}_{v} )^{{\text{T}}} ({\mathbf{H}}_{y} )} } dxdy$$
(44)
$${\mathbf{M}}_{ww} = \int_{0}^{{L_{1} }} {\int_{0}^{{L_{2} }} {I_{0} ({\mathbf{H}}_{w} )^{{\text{T}}} ({\mathbf{H}}_{w} )} } dxdy + m_{s} {\mathbf{H}}_{w}^{{\text{T}}} {\mathbf{H}}_{w} \left| {_{{x = x_{m} ,{\kern 1pt} {\kern 1pt} y = y_{m} }} } \right.$$
(45)
$${\mathbf{M}}_{xx} = \int_{0}^{{L_{1} }} {\int_{0}^{{L_{2} }} {I_{2} ({\mathbf{H}}_{x} )^{{\text{T}}} ({\mathbf{H}}_{x} )} } dxdy$$
(46)
$${\mathbf{M}}_{yy} = \int_{0}^{{L_{1} }} {\int_{0}^{{L_{2} }} {I_{2} ({\mathbf{H}}_{y} )^{{\text{T}}} ({\mathbf{H}}_{y} )} } dxdy$$
(47)
$${\mathbf{C}} = \left[ {\begin{array}{*{20}c} {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {{\mathbf{C}}_{ww} } & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ \end{array} } \right]$$
(48)
$${\mathbf{C}}_{ww} = \frac{{\sqrt {\mu \lambda \rho_{1} hD_{1}^{1} /M_{\infty } } }}{{L_{1}^{2} }}\int_{0}^{{L_{1} }} {\int_{0}^{{L_{2} }} {{\mathbf{H}}_{w}^{{\text{T}}} } } {\mathbf{H}}_{w} dxdy$$
(49)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, K. Effects of the concentrated mass and elastic support on dynamic and flutter behaviors of panel structures. Int J Mech Mater Des 20, 373–392 (2024). https://doi.org/10.1007/s10999-023-09680-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-023-09680-7

Keywords

Navigation