Skip to main content

Advertisement

Log in

Design, modeling, and experimental verification of reversed exponentially tapered multimodal piezoelectric energy harvester from harmonic vibrations for autonomous sensor systems

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Energy harvesting from multiple modes using piezoelectricity ensures the harvesting of energy from the varied ambient, wideband vibration sources for wireless autonomous sensor systems. In the reported studies, a piezoelectric energy harvester (PEH) with high strain concentration and multimodal characteristics plays an important role in enhancing the harvester's vibration amplitude, performance, and frequency bandwidth. This paper proposes a novel multimodal piezoelectric energy harvester by taking advantage of multimodal techniques consisting of a reversed exponentially tapered beam (Primary beam) and six branched beams (Secondary beam) attached to the primary beam’s free end with a proper flange. This design provides wideband with closely placed vibration modes while the reversed exponentially tapered beam attached to the secondary beams configuration provides higher strain distribution and hence improved harvested power. The harvester is subjected to continuous transverse vibrations due to vertical sinusoidal base excitation of varying frequencies and acceleration ranges. As a result, the primary beam with the piezoelectric patch continually deforms and generates electrical energy. The harvester’s theoretical model was developed and derived from the Euler–Bernoulli beam theory. The proposed harvester was fabricated, and its performance evaluated through experimentation at frequencies ranging from 8 to 30 Hz. Experimental results and numerical simulations using COMSOL Multiphysics confirmed the accuracy of the proposed theoretical model. As ambient vibrations were available in a band of frequencies, the proposed multimodal harvester had the potential to capture energy from wideband ambient vibration sources and hence was advantageous over conventional single-mode harvesters in sourcing low-power autonomous sensors. An energy management system designed after investigating the charging behavior of the capacitor with the harvester revealed that the proposed harvester was suitable for source wireless autonomous sensor systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The manuscript has no associated data.

Abbreviations

\({M}_{n}\left({x}_{n},t\right)\) :

Bending moment

\({c}_{dn}\) :

Damping coefficient

\({w}_{n}\left({x}_{n},t\right)\) :

Deflection in a transverse direction

\({m}_{n}\) :

Mass per unit length

\({f}_{n}\left({x}_{n},t\right)\) :

Forcing function

\(n\) :

Number of sections

\(p\) :

Reversed exponentially tapered primary beam element \((p=1)\)

\(s\) :

Rectangular secondary beam element \((s=\mathrm{2,3},\mathrm{4,5},\mathrm{6,7})\)

\(E\) :

Modulus of elasticity

\({I}_{n}\) :

Area moment of inertia

\({\vartheta }_{r}\) :

Forward coupling term

\(v(t)\) :

Piezoelectric output voltage

\({\varphi }_{r}\left(x\right)\) :

Spatial mode shape eigenfunction for the \({r}^{th}\) mode

\({\eta }_{r}\left(t\right)\) :

Time-dependent generalized coordinates for the \({r}^{th}\) mode

\({\omega }_{r}\) :

Natural frequency of the harvester for \({r}^{th}\) mode

\(E{I}_{n=p}\) :

Bending stiffness of exponentially tapered primary beam element

\({EI}_{0}\) :

Bending stiffness of the primary beam element at \({x}_{p}=0\)

\(c\) :

Tapering parameter of the primary beam element

\({x}_{p}\) :

\(x\)-coordinate for exponentially tapered primary beam element

\({e}^{c{x}_{p}}\) :

Exponential varying term for primary beam element

\({m}_{n=p}\) :

Mass per unit length for exponentially tapered primary beam element

\({m}_{0}\) :

Mass per unit length of the primary beam element at \({x}_{p}=0\)

\({\varphi }_{rp}\left({\xi }_{p}\right)\) :

Mode shape function for exponentially tapered primary beam element in terms of a dimensionless parameter \({\xi }_{p}\)

\({\xi }_{p}\) :

Dimensionless parameters for the primary beam element

\({k}_{rp}\) :

Frequency parameter of the primary beam element

\({\varphi }_{rs}\left({\xi }_{s}\right)\) :

Mode shape function for rectangular secondary beam elements in terms of a dimensionless parameter \({\xi }_{s}\)

\({x}_{s}\) :

\(x\)-coordinate for rectangular secondary beam elements

\({\xi }_{s}\) :

Dimensionless parameter for secondary beam elements

\({\lambda }_{rs}\) :

Frequency parameter of the secondary beam elements

\({L}_{p}\) :

Length of the exponentially tapered primary beam

\({k}_{rp}\) :

Frequency parameter of the primary beam element

\({\omega }_{rp}\) :

Natural frequency of the primary beam element

\({L}_{s}\) :

Length of the secondary beam elements

\({\varphi }_{rs}\left({\xi }_{s}\right)\) :

Mode shape function for rectangular secondary beam elements in terms of a dimensionless parameter \({\xi }_{s}\)

\({\lambda }_{rs}\) :

Frequency parameter of the secondary beam elements

\({\omega }_{rs}\) :

Natural frequency of the secondary beam elements

\(E{I}_{s}\) :

Bending stiffness of the secondary beam elements.

\({m}_{s}\) :

Mass per unit length of the secondary beam elements.

\(EI({\xi }_{p})\) :

Bending stiffness for exponentially tapered primary beam element in terms of a dimensionless parameter \({\xi }_{p}\)

\(I\left({\xi }_{p}\right)\) :

Area moment of inertia in terms of a dimensionless parameter \({\xi }_{p}\)

\({I}_{0}\) :

Beam's moment of inertia at \({\xi }_{p}=0\)

\({e}^{c{\xi }_{p}}\) :

Exponential term for primary beam element in terms of a dimensionless parameter \({\xi }_{p}\)

\(B\left({\xi }_{p}\right)\) :

Exponentially varying width in terms of a dimensionless parameter \({\xi }_{p}\)

\({B}_{0}\) :

Primary beam width at the fixed end (\({\xi }_{p}=0\))

\({B}_{1}\) :

Primary beam width at the other end \(({\xi }_{p}=1)\)

\({T}_{p}\) :

Thickness of the exponentially tapered primary beam

\({L}_{p}\) :

Length of the exponentially tapered primary beam

\({\rho }_{p}\) :

Density of the exponentially tapered primary beam

\({E}_{p}\) :

Modulus of elasticity of the exponentially tapered primary beam

\({E}_{pe}\) :

Modulus of elasticity of the piezoelectric patch

\({\rho }_{pe}\) :

Density of the piezoelectric patch

\({L}_{pe}\) :

Length of the piezoelectric patch

\({B}_{pe}\) :

Width of the piezoelectric patch

\({T}_{pe}\) :

Thickness of the piezoelectric patch

\({h}_{a}\) :

Distance between the neutral axis and the bottom of the host beam

\({h}_{b}\) :

Distance between the neutral axis and the top of the host beam

\({h}_{c}\) :

Distance between the neutral axis and the piezoelectric layer's top

\({h}_{pc}\) :

Distance between the neutral axis and the piezoelectric layer's center

\(E_{r}\) :

Ratio of young’s modulus

\({L}_{tp}\) :

Length of the flange tip mass

\({B}_{tp}\) :

Width of the flange tip mass

\({T}_{tp}\) :

Thickness of the flange tip mass

\({\rho }_{tp}\) :

Density of the flange tip mass

\(E{I}_{s}\) :

Bending stiffness of the secondary beam elements

\({m}_{s}\) :

Mass per unit length of the secondary beam elements

\({E}_{s}\) :

Modulus of elasticity of the secondary beam elements

\({I}_{s}\) :

Moment of inertia of the secondary beam elements

\({\rho }_{s}\) :

Density of the secondary beam elements

\({B}_{s}\) :

Width of the secondary beam elements

\({T}_{s}\) :

Thickness of the secondary beam elements

\({w}_{b}\left({\xi }_{p},t\right)\) :

Harvester's base excitation

\(g\left(t\right)\) :

Base transverse displacement

\(R(t)\) :

Base rotational displacement

\({w}_{T}\left({\xi }_{p},t\right)\) :

Total transverse displacement of the primary beam element

\({w}_{p}\left({\xi }_{p},t\right)\) :

Transverse displacement of the primary beam element in terms of a dimensionless parameter \({\xi }_{p}\)

\({w}_{b}\left({\xi }_{s},t\right)\) :

Moving base for secondary beam elements

\({w}_{s}\left({\xi }_{s},t\right)\) :

Transverse displacement of the secondary beam elements dimensionless parameter \({\xi }_{s}\)

\({w}_{T}\left({\xi }_{s},t\right)\) :

Total transverse displacement of the secondary beam elements

\(T\) :

Total kinetic energy of the harvester

\(m\left({\xi }_{p}\right)\) :

Mass of the primary beam element in terms of a dimensionless parameter \({\xi }_{p}\)

\({m}_{tp}\) :

Mass of the flange tip mass

\({J}_{tp}\) :

Moment of inertia of the flange tip mass

\({J}_{bs}\) :

Inertia of the secondary beam elements

\({m}_{ts}\) :

Mass of the tip mass attached to the secondary beam elements

\({J}_{ts}\) :

Moment of inertia of the tip mass attached to the secondary beam elements

\(U\) :

Total potential energy of the system

\({e}_{31}\) :

Piezoelectric constant

\({C}_{pe}\) :

Internal capacitance of the piezoelectric patch

\({\varepsilon }_{33}^{s}\) :

Dielectric constant

\({G}_{r}\) :

Driving force term due to base excitation

\({G}_{p}\) :

Driving force term due to base excitation for the primary beam element with tip mass

\({G}_{s}\) :

Driving force term due to base excitation for the secondary beam element

\({G}_{st}\) :

Driving force term due to base excitation for the secondary beam tip mass

\({\zeta }_{r}\) :

Damping ratio

\({R}_{l}\) :

Load resistance

\(i\left(t\right)\) :

Dependent current source term of the piezoelectric layer

\({\delta }_{r}\) :

Backward coupling term

\({w}_{0}\) :

Base translational displacement amplitude

\(\omega \) :

Driving base excitation frequency

F r :

Modal mechanical forcing function amplitude

V :

Voltage amplitude

\({H}_{r}\) :

Amplitude of the modal coordinate function

\({V}_{oc}\) :

Open-circuit voltage

j :

Unit imaginary number

\({P}_{avg}\) :

Average harvested power

\({R}_{opt}\) :

Optimum load resistance

\({a}_{1}\) :

Amplitude of 1st peak in the free vibration response

\({a}_{2}\) :

Amplitude of 2nd subsequent peak in the free vibration response

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Umapathy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

1.1 (A) Reversed exponentially tapered primary composite beam element (Beam Sect. 1)

Beam Sect. 1 is a composite consisting of a reserved exponentially tapered beam made of Al-7075 bonded to a piezoelectric patch. Bending stiffness \(EI({\xi }_{p})\) and mass per unit length \(m({\xi }_{p})\) in beam Sect. 1 is given by (Salmani et al. 2015)

$$EI({\xi }_{p}) =\left[\frac{B({\xi }_{p}){E}_{b}}{3}{{(h}_{b}}^{3}-{{h}_{a}}^{3})+\frac{{B}_{pe}{E}_{pe}}{3}{{(h}_{c}}^{3}-{{h}_{b}}^{3})\right]$$
(35)
$$m({\xi }_{p}) ={B({\xi }_{p})\rho }_{p}{T}_{p}+{B}_{pe}{\rho }_{pe}{T}_{pe}$$
(36)

where \(I\left({\xi }_{p}\right)={I}_{0}{e}^{c{\xi }_{p}}\), \({{B\left({\xi }_{p}\right)=B}_{0}e}^{c{\xi }_{p}}\), and \(m\left({\xi }_{p}\right)={m}_{0}{e}^{c{\xi }_{p}}\) were the area moment of inertia, width, and mass per unit length of the beam which varied exponentially along its length. Where \({I}_{0}=\frac{{{B}_{0}T}_{p}^{3}}{12}\), \({B}_{0}\) and \({m}_{0}=\) \({{B}_{0}\rho }_{p}{T}_{p}\) were the beam's moment of inertia, width, and mass per unit length of the beam at \({\xi }_{p}=0\). \({E}_{p},{\rho }_{p},{L}_{p}\) and \({T}_{p}\) are the modulus of elasticity, density, length, and thickness of the exponentially tapered primary beam (Beam Sect. 1) and \({E}_{pe},{{\rho }_{pe},{L}_{pe},B}_{pe},\) and \({T}_{pe}\) the modulus of elasticity, density, length, width and thickness of the piezoelectric material bonded to the beam.

Fig. 17
figure 17

Cross-section of a reversed exponentially tapered beam bonded to a piezoelectric patch

As shown in Fig. 17, ha is the distance from the neutral axis to the bottom of the host beam, hb distance from the neutral axis to the top of the host beam, hc distance from the neutral axis to the piezoelectric layer's top, hpc distance between the neutral axis and the piezoelectric layer's center and nm the ratio of young’s modulus. These parameters are as follows: (Usharani et al. 2017)

$${h}_{a}=-\frac{nm{T}_{p}^{2}+2{T}_{p}{T}_{pe}+{T}_{pe}^{2}}{2nm{T}_{p}+2{T}_{pe}}$$
(37)
$${h}_{b}=\frac{nm{T}_{p}^{2}-{T}_{pe}^{2}}{2nm{T}_{p}+2{T}_{pe}}$$
(38)
$${h}_{c}=\frac{nm{T}_{p}^{2}+2nm{T}_{p}{T}_{pe}+{T}_{pe}^{2}}{2nm{T}_{p}+2{T}_{pe}}$$
(39)
$${h}_{pc}={h}_{b}+({T}_{pe}/2)$$
(40)
$$E_r=\frac{{E}_{p}B\left({\xi }_{p}\right)}{{E}_{pe}{B}_{pe}}$$
(41)

1.2 (B) Rectangular branched secondary beam elements (Beam Sects. 2, 3, 4, 5, 6, 7)

Bending stiffness \(E{I}_{s}\) and mass per unit length \({m}_{s}\) for beam Sects. 2, 3, 4, 5, 6, 7 are expressed as (Salmani et al. 2015; Usharani et al. 2017)

$$E{I}_{s}={E}_{s}{I}_{s}, {m}_{s}={\rho }_{s}{B}_{s}{T}_{s}, {I}_{s}=\frac{{B}_{s}{{T}_{s}}^{3}}{12}$$
(42)

where \({{E}_{s}, {I}_{s}, {\rho }_{s}, B}_{s}\) and \({T}_{s}\) represent the modulus of elasticity, a moment of inertia, density, width, and thickness of the branched beams.

Appendix B

The motion of the base excited harvester in the transverse direction is represented by transverse displacement \(g\left(t\right)\) with superimposed rotational displacement \(R(t)\). Base displacement \({w}_{b}\left({\xi }_{p},t\right)\) can be written as (Erturk and Inman 2008; Li et al. 2019a)

$${w}_{b}\left({\xi }_{p},t\right)=g\left(t\right)+{\xi }_{p}R(t)$$
(43)

The vibration base does not rotate, and hence the superimposed rotational displacement was zero (\(R(t)\) = 0).

Total transverse displacement of the primary beam element is written as (Erturk and Inman 2008; Li et al. 2019a)

$${w}_{T}\left({\xi }_{p},t\right)={w}_{p}\left({\xi }_{p},t\right)+{w}_{b}\left({\xi }_{p},t\right)$$
(44)

where \({w}_{p}\left({\xi }_{p},t\right)\) is the transverse displacement relative to the fixed end of the primary beam.

The movable base for the secondary beam elements was the free end of the primary beam element. Base displacement for the secondary beam elements was given by (Erturk and Inman 2008; Li et al. 2019c)

$${w}_{b}\left({\xi }_{s},t\right)={\left[{w}_{b}\left({\xi }_{s}+{\xi }_{p},t\right)+{w}_{p}\left({\xi }_{p},t\right)+{\xi }_{p}{{w}_{p}}^{\mathrm{^{\prime}}}\left({\xi }_{p},t\right)\right]}_{{\xi }_{p}=1}$$
(45)

Total transverse displacement in each secondary beam element is written as (Erturk and Inman 2008; Li et al. 2019c)

$${w}_{T}\left({\xi }_{s},t\right)={w}_{s}\left({\xi }_{s},t\right)+{w}_{b}\left({\xi }_{s},t\right), s=2, 3, 4, 5, 6, 7$$
(46)

Total kinetic energy of the harvester in terms of eigenfunction and a time-dependent coordinate is given by

$$T=\frac{1}{2}{\int }_{0}^{1}m\left({\xi }_{p}\right)\left[{{\varphi }_{p}\left({\xi }_{p}\right)}^{2}.{\dot{\eta }\left(t\right) }^{2}+{\dot{g}\left(t\right)}^{2}+2{\varphi }_{p}\left({\xi }_{p}\right).\dot{\eta }\left(t\right)\dot{g}\left(t\right)\right]d{\xi }_{p}+\frac{1}{2}{m}_{tp}\left[{{\varphi }_{p}\left({\xi }_{p}\right)}^{2}.{\dot{\eta }\left(t\right) }^{2}+{\dot{g}\left(t\right)}^{2}+2{\varphi }_{p}\left({\xi }_{p}\right).\dot{\eta }\left(t\right)\dot{g}\left(t\right)\right]+\frac{1}{2}{J}_{tp}{{{\varphi }_{p}}^{\mathrm{^{\prime}}}}^{2}\left({\xi }_{p}\right).{\dot{\eta }\left(t\right)}^{2}+\frac{1}{2}\sum_{s=2}^{7}{m}_{s}{\int }_{0}^{1}\left[{\left({\varphi }_{s}\left({\xi }_{s}\right).\dot{\eta }\left(t\right)\right)}^{2}+{\dot{g}\left(t\right)}^{2}+{\left({\varphi }_{p}\left({\xi }_{p}\right).\dot{\eta }\left(t\right)\right)}^{2}+{\left({{\xi }_{p}{\varphi }_{p}}^{\mathrm{^{\prime}}}\left({\xi }_{p}\right).\dot{\eta }\left(t\right)\right)}^{2}+2{\varphi }_{s}\left({\xi }_{s}\right).\dot{\eta }\left(t\right)\dot{g}\left(t\right)+2\dot{g}\left(t\right){\varphi }_{p}\left({\xi }_{p}\right).\dot{\eta }\left(t\right)+2{\varphi }_{s}\left({\xi }_{s}\right){\varphi }_{p}\left({\xi }_{p}\right).{\dot{\eta }\left(t\right)}^{2}+2\dot{g}\left(t\right){{\xi }_{p}{\varphi }_{p}}^{\mathrm{^{\prime}}}\left({\xi }_{p}\right).\dot{\eta }\left(t\right)+2{\varphi }_{s}\left({\xi }_{s}\right){{\xi }_{p}{\varphi }_{p}}^{\mathrm{^{\prime}}}\left({\xi }_{p}\right).{\dot{\eta }\left(t\right)}^{2}+2{\varphi }_{p}\left({\xi }_{p}\right){{\xi }_{p}{\varphi }_{p}}^{\mathrm{^{\prime}}}\left({\xi }_{p}\right).{\dot{\eta }\left(t\right)}^{2}\right]d{\xi }_{s}\mathrm{at }{\xi }_{p}=1+\frac{1}{2}\sum_{s=2}^{7}{m}_{ts}\left[{\left({\varphi }_{s}\left({\xi }_{s}\right).\dot{\eta }\left(t\right)\right)}^{2}+{\dot{g}\left(t\right)}^{2}+{\left({\varphi }_{p}\left({\xi }_{p}\right).\dot{\eta }\left(t\right)\right)}^{2}+{\left({{\xi }_{p}{\varphi }_{p}}^{\mathrm{^{\prime}}}\left({\xi }_{p}\right).\dot{\eta }\left(t\right)\right)}^{2}+2{\varphi }_{s}\left({\xi }_{s}\right).\dot{\eta }\left(t\right)\dot{g}\left(t\right)+2\dot{g}\left(t\right){\varphi }_{p}\left({\xi }_{p}\right).\dot{\eta }\left(t\right)+2{\varphi }_{s}\left({\xi }_{s}\right){\varphi }_{p}\left({\xi }_{p}\right).{\dot{\eta }\left(t\right)}^{2}+2\dot{g}\left(t\right){{\xi }_{p}{\varphi }_{p}}^{\mathrm{^{\prime}}}\left({\xi }_{p}\right).\dot{\eta }\left(t\right)+2{\varphi }_{s}\left({\xi }_{s}\right){{\xi }_{p}{\varphi }_{p}}^{\mathrm{^{\prime}}}\left({\xi }_{p}\right).{\dot{\eta }\left(t\right)}^{2}+2{\varphi }_{p}\left({\xi }_{p}\right){{\xi }_{p}{\varphi }_{p}}^{\mathrm{^{\prime}}}\left({\xi }_{p}\right).{\dot{\eta }\left(t\right)}^{2}\right]\mathrm{at }{\xi }_{p}=1, {\xi }_{s}=1+\frac{1}{2}{J}_{ts}{\left.{{\varphi }_{s}^{\mathrm{^{\prime}}}}^{2}({\xi }_{s})\right|}_{{\xi }_{s}=1}{{\dot{\eta }}_{i}(t)}^{2}$$
(47)

Total potential energy of the harvester in terms of eigenfunction and a time-dependent coordinate is given by

$$U=\frac{1}{2}\left({\int }_{0}^{1}{{{EI({\xi }_{p})\varphi }_{p}}^{\mathrm{^{\prime}}\mathrm{^{\prime}}}\left({\xi }_{p}\right)}^{2}.{\eta (t)}^{2}d{\xi }_{p}\right)-{B}_{pe}{e}_{31}\frac{v\left(t\right)}{{T}_{pe}}\frac{\left({h}_{c}^{2}-{h}_{b}^{2}\right)}{2}{\left.{{\varphi }_{p}}^{\mathrm{^{\prime}}}\left({\xi }_{p}\right).\eta (t)\right|}_{{\xi }_{p}=1}+\frac{1}{2}{C}_{pe}{v\left(t\right)}^{2}+\sum_{s=2}^{7}\left(\frac{1}{2}{EI}_{s}{\int }_{0}^{1}{{{\varphi }_{s}}^{\mathrm{^{\prime}}\mathrm{^{\prime}}}\left({\xi }_{s}\right)}^{2}.{\eta (t)}^{2}d{\xi }_{s}\right)$$
(48)

Appendix C

The forward coupling term is given by

$$ \vartheta _{r} = \frac{{B_{{pe}} e_{{31}} }}{{T_{{pe}} }}\frac{{\left( {h_{c}^{2} - h_{b}^{2} } \right)}}{2}\left. {\varphi _{{rp}} \left( {\xi _{p} } \right)} \right|_{{\xi _{p} }} = 1 $$
(49)

The driving force term \({G}_{r}\) due to base excitation of the harvester was obtained by

$${G}_{r}={G}_{p}+{G}_{s}+{G}_{st}$$
(50)

For the primary beam element, the driving force term due to base excitation \({G}_{p}\) was

$$ G_{p} = \left( {\smallint _{0}^{1} m\left( {\xi _{p} } \right)\varphi _{{rp}} \left( {\xi _{p} } \right)d\xi _{p} } \right) + \left. {m_{{tp}} \varphi _{{rp}} \left( {\xi _{p} } \right)} \right|_{{\xi _{p} }} = 1 $$
(51)

For the secondary beam element, the driving force term due to base excitation \({G}_{s}\) was

$$ G_{s} = \sum\limits_{{s = 2}}^{7} {m_{s} } \int\limits_{0}^{{L_{s} }} {\left[ {\varphi _{{rs}} \left( {\xi _{s} } \right) + \varphi _{{rp}} \left( {\xi _{p} } \right) + \xi _{p} \varphi _{{rp}} \prime \left( {\xi _{p} } \right)} \right]d\xi _{s} \;{\text{at}}\;\xi _{p} = 1} $$
(52)

Driving force term \({G}_{st}\) due to base excitation of the secondary beam element’s tip mass is given by

$${G}_{st}=\sum_{s=2}^{7}{m}_{ts}{\left[{\varphi }_{rs}\left({\xi }_{s}\right)+{\varphi }_{rp}\left({\xi }_{p}\right)+{{\xi }_{p}{\varphi }_{rp}}^{\mathrm{^{\prime}}}\left({\xi }_{p}\right)\right]}_{{{\xi }_{s,}=1, \xi }_{p}=1}$$
(53)

The internal capacitance of the piezoelectric layer

$${C}_{pe}={\varepsilon }_{33}^{s}{B}_{pe}{L}_{pe}/{T}_{pe}$$
(54)

The piezoelectric patch current is given by

$$i\left(t\right)={\delta }_{r} \cdot {\dot{\eta }}_{r}\left(t\right)$$
(55)

The backward coupling term is given by

$$ \delta _{r} = \left( {\frac{{B_{{pe}} e_{{31}} }}{{T_{{pe}} }}\frac{{\left( {h_{c}^{2} - h_{b}^{2} } \right)}}{2}\left. {\varphi _{{rp}} \left( {\xi _{p} } \right)} \right|_{{\xi _{p} = 1}} } \right) $$
(56)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja, V., Umapathy, M., Uma, G. et al. Design, modeling, and experimental verification of reversed exponentially tapered multimodal piezoelectric energy harvester from harmonic vibrations for autonomous sensor systems. Int J Mech Mater Des 19, 763–792 (2023). https://doi.org/10.1007/s10999-023-09657-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-023-09657-6

Keywords

Navigation