Skip to main content

Advertisement

Log in

Exact solutions for doubly curved laminated cross-ply and antisymmetric angle-ply shell substrate based bimorph piezoelectric energy harvesters

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Exact solutions for the electro-elastic static response of simply supported doubly curved (DC) shell piezoelectric bimorph energy harvesters composed of laminated cross-ply or antisymmetric angle-ply composite substrate shell subjected to distributed mechanical loads have been derived. Both series and parallel connections of the piezoelectric layers of the bimorphs are considered for deriving the exact solutions. Derivation of such exact solutions is found to be possible when the piezoelectric layers are orthotropic and generally orthotropic. All linear theories of elasticity and piezoelectricity are used in orthogonal curvilinear coordinate system and a variational principle is employed to determine the boundary conditions associated with the governing equations. The electro-elastic governing equations are solved exactly to obtain the static responses of the harvesters for different shell configurations. The effects of curvature, stacking sequence of the substrate layers and connections of the piezoelectric layers on the harvesting capability of the laminated composite DC shell bimorph harvesters are investigated. It is explored from the exact solutions that the energy harvesting capability of hyperboloid DC Shell piezoelectric bimorph is maximum among the spherical, paraboloid and hyperboloid DC laminated piezoelectric shell harvesters. The expressions of the exact solutions for the DC laminated shell type piezoelectric energy harvesters derived in this paper may be treated as the benchmark solutions for verifying numerical and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

No data from elsewhere is associated with this manuscript.

References

  • Akbar, M., Sosa, J.L.: Piezoelectric energy harvester composite under dynamic bending with implementation to aircraft wingbox structure. Compos. Struct. 153(15), 193–203 (2016)

    Article  Google Scholar 

  • Aloui, R., Larbi, W., Chouchane, M.: Global sensitivity analysis of piezoelectric energy harvesters. Compos. Struct. 228, 111317 (2019)

    Article  Google Scholar 

  • Arrieta, A.F., Hagedorn, P., Erturk, A., Inman, D.I.: A piezoelectric bistable plate for nonlinear broadband energy harvesting. Appl. Phys. Lett. 97, 104102 (2010)

    Article  Google Scholar 

  • Chen, W.Q., Cai, J.B., Ye, G.R., Wang, Y.F.: Exact three-dimensional solutions of laminated orthotropic piezoelectric rectangular plates featuring interlaminar bonding imperfections modelled by a general spring layer. Int. J. Solids Struct. 41(18–19), 5247–5263 (2004)

    Article  MATH  Google Scholar 

  • Chen, X., Yang, T., Wang, W., Yao, X.: Vibration energy harvesting with a clamped piezoelectric circular diaphragm. Ceram. Int. 38S, S271–S274 (2012)

    Article  Google Scholar 

  • Dastjerdi, R., Behdinan, K.: Dynamic performance of piezoelectric energy harvesters with a multifunctional nanocomposite substrate. Appl. Energy 293, 116947 (2021)

    Article  Google Scholar 

  • DuToit, N.E., Wardle, B.L.: Experimental verification of models for microfabricated piezoelectric vibration energy harvesters. AIAA J. 45, 1126–1137 (2007)

    Article  Google Scholar 

  • Erturk, A., Inman, D.J.: A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. ASME J. Vib. Acoust. 130, 041002 (2008)

    Article  Google Scholar 

  • Erturk, A., Inman, D.J.: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18, 025009 (2009)

    Article  Google Scholar 

  • Fan, K., Chang, J., Chao, F., Pedrycz, W.: Design and development of a multipurpose piezoelectric energy harvester. Energy Convers. Manag. 96(15), 430–439 (2015)

    Article  Google Scholar 

  • Fang, H.B., Liu, J.Q., Xu, Z.Y., Dong, Lu., Wang, Li., Chen, Di., Cai, B.C., Liu, Y.: Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting. Microelectron. J. 37, 1280–1284 (2006)

    Article  Google Scholar 

  • Fattati, I., Mirdamadi, H.R.: Novel composite finite element model for piezoelectric energy harvester based on 3D kinematics. Compos. Struct. 179, 161–171 (2017)

    Article  Google Scholar 

  • Guan, M., Liao, W.H.: Design and analysis of a piezoelectric energy harvester for rotational motion systems. Energy Convers. Manag. 111, 239–244 (2016)

    Article  Google Scholar 

  • Guo, T., Xu, Z., Huang, L., Hu, M., Jin, L., Wang, J.: Analytical modeling and performance study of a piezoelectric laminated annular plate for rotary energy harvesting. IEEE Access 8, 214966–214977 (2020)

    Article  Google Scholar 

  • Jemai, A., Najar, F., Chafra, M., Qunaies, Z.: Mathematical modeling of an active fiber composite energy harvester with interdigitated electrodes. Shock Vib (2014). https://doi.org/10.1155/2014/971597

    Article  Google Scholar 

  • Jha, B.K., Ray, M.C.: Benchmark analysis of piezoelectric bimorph energy harvesters composed of laminated beam substrates. Int. J. Mech. Mater. Des. 15(4), 739–755 (2019)

    Article  Google Scholar 

  • Lee, H.Y., Choi, B.: A multilayer PVDF composite cantilever in the helmoltz resonator for energy harvesting from sound pressure. Smart Mater. Struct. 22(11), 1–12 (2013)

    Article  Google Scholar 

  • Li, X., Upadrashta, D., Yu, K., Yang, Y.: Sandwich piezoelectric energy harvester: analytical modeling and experimental validation. Energy Convers. Manag. 176, 69–85 (2018)

    Article  Google Scholar 

  • Malakooti, M., Sodano, H.A.: Piezoelectric energy harvesting through shear mode operation. Smart Mater. Struct. 24(5), 1–12 (2015)

    Article  Google Scholar 

  • Malloali, M., Chouchane, M.: Piezoelectric energy harvesting using macro fiber composite patches. Proc. IMech E Part C. J. Mech. Eng. Sci. 234, 4331–4349 (2020)

    Article  Google Scholar 

  • Paknejad, A., Rahimi, G., Salmani, H.: Analytical solution and numerical validation of piezoelectric energy harvester patch for various thin multilayer composite plates. Arch. Appl. Mech. 88, 1139–1161 (2018)

    Article  Google Scholar 

  • Ray, M.C., Jha, B.K.: Exact solutions for bimorph cross- ply and angle-ply plate piezoelectric energy harvesters. Compos. Struct. 286, 115261 (2022)

    Article  Google Scholar 

  • Reddy, J.N.: Mechanics of laminated composite plate. In: Theory, and Analysis. CRC Press, Boca Raton (1997)

  • Roundy, S.: On the Effectiveness of vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 16, 809–823 (2005)

    Article  Google Scholar 

  • Sang, Y., Huang, X., Liu, H., Jin, P.: A vibration-based hybrid energy harvester for wireless sensor system. IEEE Transform. Magn. 48, 4495–4498 (2012)

    Article  Google Scholar 

  • Sezer, N., Koc, M.: A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 80, 1–25 (2021)

    Article  Google Scholar 

  • Shen, D., Choe, S.Y., Kim, D.J.: Analysis of piezoelectric materials for energy harvesting devices under high-g vibrations. Jpn. J. Appl. Phys. 46, 6755–6760 (2007)

    Article  Google Scholar 

  • Shu, Y.C., Lien, I.C.: Analysis of power output for piezoelectric energy harvesting systems. Smart Mater. Struct. 15, 1499–1512 (2006)

    Article  Google Scholar 

  • Sodano, H.A., Park, G., Inman, D.J.: Estimation of electric charge output for piezoelectric energy harvesting. Strain 40, 49–58 (2004a)

    Article  Google Scholar 

  • Sodano, H.A., Inman, D.J., Park, G.: A review of power harvesting from vibration using piezoelectric materials. Shock Vib. Digest 36, 197–205 (2004b)

    Article  Google Scholar 

  • Swallow, L.M., Juo, J.K., Siores, E., Patel, I., Dodds, D.: A piezoelectric fiber composite based energy harvesting device for potential wearable applications. Smart Mater. Struct. 17, 025017 (2008)

    Article  Google Scholar 

  • Vatansever, D., Hadimari, R.L., Shah, T., Siores, E.: An investigation of energy harvesting from renewable sources with PVDF and PZT. Smart Mater. Struct. 20, 055019 (2011)

    Article  Google Scholar 

  • Xei, X.D., Wang, Q.: A study on a high efficient cylinder composite piezoelectric energy harvester. Compos. Struct. 161, 237–245 (2017)

    Article  Google Scholar 

  • Yang, B., Yun, K.-S.: Piezoelectric shell structures as wearable energy harvesters for effective power generation at low frequency movement. Sensors Actuators A Phys. 188, 427–433 (2012)

    Article  Google Scholar 

  • Yang, J.: The Mechanics of Piezoelectric Structures. World Scientific, Singapore (2006)

    Book  Google Scholar 

  • Zhang, L., Xu, X., Han, Q., Qin, Z., Chu, F.: Energy harvesting of beam vibration based on piezoelectric stacks. Smart Mater. Struct. 28, 1–11 (2019)

    Article  Google Scholar 

  • Zhang, X.F., Hu, S.D., Tzhou, H.S.: A generic double-curvature piezoelectric shell energy harvester: linear/nonlinear theory and applications. J. Sound Vib. 333(26), 7286–7298 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Ray.

Ethics declarations

Conflict of interest

Authors have no conflict of interest for this submission and did not receive any fund for the preparation of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The elements of the coefficient matrices in Eq. (25) are as follows:

$$ {\mathbf{A}}_{11}^{{\mathbf{k}}} = {\overline{\mathbf{C}}}_{55}^{{\mathbf{k}}} ({\mathbf{s}}^{{\mathbf{k}}} )^{2} + \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right) \, {\overline{\mathbf{C}}}_{55}^{{\mathbf{k}}} ({\mathbf{s}}^{{\mathbf{k}}} ) - {\overline{\mathbf{C}}}_{11}^{{\mathbf{k}}} {{\varvec{\upalpha}}}^{2} - {\overline{\mathbf{C}}}_{66}^{{\mathbf{k}}} {{\varvec{\upbeta}}}^{2} - \frac{1}{{{\mathbf{R}}_{1} }}\left( {\frac{2}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{55}^{{\mathbf{k}}} , $$
$$ {\mathbf{A}}_{12}^{{\mathbf{k}}} = - \left( {{\overline{\mathbf{C}}}_{12}^{{\mathbf{k}}} + {\overline{\mathbf{C}}}_{66}^{{\mathbf{k}}} } \right){\mathbf{\alpha \beta }},\quad {\mathbf{A}}_{13}^{{\mathbf{k}}} = \left( {{\overline{\mathbf{C}}}_{13}^{{\mathbf{k}}} + {\overline{\mathbf{C}}}_{55}^{{\mathbf{k}}} } \right){\mathbf{\alpha s}}^{{\mathbf{k}}} + \left\{ {\frac{{{\overline{\mathbf{C}}}_{11}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} + \frac{{{\overline{\mathbf{C}}}_{12}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }} + \left( {\frac{2}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{55}^{{\mathbf{k}}} } \right\}{{\varvec{\upalpha}}}, $$
$$ {\mathbf{A}}_{14}^{{\mathbf{k}}} = \left( {{\overline{\mathbf{e}}}_{31}^{{\mathbf{k}}} + {\overline{\mathbf{e}}}_{15}^{{\mathbf{k}}} } \right){\mathbf{\alpha s}}^{{\mathbf{k}}} + \left( {\frac{2}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{e}}}_{15}^{{\mathbf{k}}} {{\varvec{\upalpha}}},\quad {\mathbf{A}}_{24}^{{\mathbf{k}}} = \left( {{\overline{\mathbf{e}}}_{32}^{{\mathbf{k}}} + {\overline{\mathbf{e}}}_{24}^{{\mathbf{k}}} } \right){\mathbf{\beta s}}^{{\mathbf{k}}} + \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{2}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{e}}}_{24}^{{\mathbf{k}}} {{\varvec{\upbeta}}}, $$
$$ {\mathbf{A}}_{22}^{{\mathbf{k}}} = {\overline{\mathbf{C}}}_{44}^{{\mathbf{k}}} ({\mathbf{s}}^{{\mathbf{k}}} )^{2} + \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{44}^{{\mathbf{k}}} ({\mathbf{s}}^{{\mathbf{k}}} ) - {\overline{\mathbf{C}}}_{66}^{{\mathbf{k}}} {{\varvec{\upalpha}}}^{2} - {\overline{\mathbf{C}}}_{22}^{{\mathbf{k}}} {{\varvec{\upbeta}}}^{2} - \frac{1}{{{\mathbf{R}}_{2} }}\left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{2}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{44}^{{\mathbf{k}}} , $$
$$ {\mathbf{A}}_{23}^{{\mathbf{k}}} = \left( {{\overline{\mathbf{C}}}_{23}^{{\mathbf{k}}} + {\overline{\mathbf{C}}}_{44}^{{\mathbf{k}}} } \right){\mathbf{\beta s}}^{{\mathbf{k}}} + \left\{ {\frac{{{\overline{\mathbf{C}}}_{12}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} + \frac{{{\overline{\mathbf{C}}}_{22}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }} + \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{2}{{{\mathbf{R}}_{2} }}} \right) \, \mathop {\overline{C}}\nolimits_{44}^{k} } \right\}{{\varvec{\upbeta}}}, $$
$$ {\mathbf{A}}_{31}^{{\mathbf{k}}} = - \left( {{\overline{\mathbf{C}}}_{13}^{{\mathbf{k}}} + {\overline{\mathbf{C}}}_{55}^{{\mathbf{k}}} } \right){\mathbf{\alpha s}}^{{\mathbf{k}}} + \left\{ {\frac{{{\overline{\mathbf{C}}}_{11}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} + \frac{{{\overline{\mathbf{C}}}_{12}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }} + \frac{{{\overline{\mathbf{C}}}_{55}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} - \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{13}^{{\mathbf{k}}} } \right\}{{\varvec{\upalpha}}}, $$
$$ {\mathbf{A}}_{32}^{{\mathbf{k}}} = - \left( {{\overline{\mathbf{C}}}_{23}^{{\mathbf{k}}} + {\overline{\mathbf{C}}}_{44}^{{\mathbf{k}}} } \right){\mathbf{\beta s}}^{{\mathbf{k}}} + \left\{ {\frac{{{\overline{\mathbf{C}}}_{12}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} + \frac{{{\overline{\mathbf{C}}}_{22}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }} + \frac{{{\overline{\mathbf{C}}}_{44}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }} - \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{23}^{{\mathbf{k}}} } \right\}{{\varvec{\upbeta}}}, $$
$$ \begin{aligned} {\mathbf{A}}_{33}^{{\mathbf{k}}} & = {\overline{\mathbf{C}}}_{33}^{{\mathbf{k}}} ({\mathbf{s}}^{{\mathbf{k}}} )^{2} + \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{33}^{{\mathbf{k}}} ({\mathbf{s}}^{{\mathbf{k}}} ) - {\overline{\mathbf{C}}}_{55}^{{\mathbf{k}}} {{\varvec{\upalpha}}}^{2} - {\overline{\mathbf{C}}}_{44}^{{\mathbf{k}}} {{\varvec{\upbeta}}}^{2} \\ & \quad { + }\left\{ {\left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right)\left( {\frac{{{\overline{\mathbf{C}}}_{13}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} + \frac{{{\overline{\mathbf{C}}}_{23}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }}} \right) - \frac{{{\overline{\mathbf{C}}}_{11}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1}^{2} }} - 2\frac{{{\overline{\mathbf{C}}}_{12}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} {\mathbf{R}}_{2} }} - \frac{{{\overline{\mathbf{C}}}_{22}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2}^{2} }}} \right\}, \\ \end{aligned} $$
$$ {\mathbf{A}}_{34}^{{\mathbf{k}}} = {\overline{\mathbf{e}}}_{33}^{{\mathbf{k}}} ({\mathbf{s}}^{{\mathbf{k}}} )^{2} + \left\{ {\left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{e}}}_{33}^{{\mathbf{k}}} - \frac{{{\overline{\mathbf{e}}}_{31}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} - \frac{{{\overline{\mathbf{e}}}_{32}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }}} \right\}{\mathbf{s}}^{{\mathbf{k}}} - {\overline{\mathbf{e}}}_{15}^{{\mathbf{k}}} {{\varvec{\upalpha}}}^{2} - {\overline{\mathbf{e}}}_{24}^{{\mathbf{k}}} {{\varvec{\upbeta}}}^{2} , $$
$$ {\mathbf{A}}_{41}^{{\mathbf{k}}} = - \left( {{\overline{\mathbf{e}}}_{31}^{{\mathbf{k}}} + {\overline{\mathbf{e}}}_{15}^{{\mathbf{k}}} } \right){\mathbf{\alpha s}}^{{\mathbf{k}}} + \left\{ {\frac{{{\overline{\mathbf{e}}}_{15}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} - \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{e}}}_{31}^{{\mathbf{k}}} } \right\}{{\varvec{\upalpha}}}, $$
$$ {\mathbf{A}}_{42}^{{\mathbf{k}}} = - \left( {{\overline{\mathbf{e}}}_{32}^{{\mathbf{k}}} + {\overline{\mathbf{e}}}_{24}^{{\mathbf{k}}} } \right){\mathbf{\beta s}}^{{\mathbf{k}}} + \left\{ {\frac{{{\overline{\mathbf{e}}}_{24}^{{\mathbf{k}}} }}{{R_{2} }} - \left( {\frac{1}{{R_{1} }} + \frac{1}{{R_{2} }}} \right){\overline{\mathbf{e}}}_{32}^{{\mathbf{k}}} } \right\}{{\varvec{\upbeta}}}, $$
$$ \begin{aligned} {\mathbf{A}}_{43}^{{\mathbf{k}}} & = {\overline{\mathbf{e}}}_{33}^{{\mathbf{k}}} ({\mathbf{s}}^{{\mathbf{k}}} )^{2} + \left\{ {\left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{e}}}_{33}^{{\mathbf{k}}} - \frac{{{\overline{\mathbf{e}}}_{31}^{{\mathbf{k}}} }}{{R_{1} }} - \frac{{{\overline{\mathbf{e}}}_{32}^{{\mathbf{k}}} }}{{R_{2} }}} \right\}{\mathbf{s}}^{{\mathbf{k}}} , \\ & \quad + \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right) \, \left( {\frac{{{\overline{\mathbf{e}}}_{31}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} + \frac{{{\overline{\mathbf{e}}}_{32}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }}} \right) - {\overline{\mathbf{e}}}_{15}^{{\mathbf{k}}} {{\varvec{\upalpha}}}^{2} - {\overline{\mathbf{e}}}_{24}^{{\mathbf{k}}} {{\varvec{\upbeta}}}^{2} , \\ \end{aligned} $$
$$ {\mathbf{A}}_{44}^{{\mathbf{k}}} = - {\overline{\mathbf{\varepsilon }}}_{33}^{{\mathbf{k}}} ({\mathbf{s}}^{{\mathbf{k}}} )^{2} - \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{\varepsilon }}}_{33}^{{\mathbf{k}}} {\mathbf{s}}^{{\mathbf{k}}} + {\overline{\mathbf{\varepsilon }}}_{11}^{{\mathbf{k}}} {{\varvec{\upalpha}}}^{2} + {\overline{\mathbf{\varepsilon }}}_{22}^{{\mathbf{k}}} {{\varvec{\upbeta}}}^{2} $$

The elements of the coefficient matrices in Eq. (40) are given by

$$ \begin{aligned} {\overline{\mathbf{A}}}_{11}^{{\mathbf{k}}} & = {\overline{\mathbf{C}}}_{55}^{{\mathbf{k}}} ({\mathbf{s}}^{{\mathbf{k}}} )^{2} + \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{55}^{{\mathbf{k}}} ({\mathbf{s}}^{{\mathbf{k}}} ) - {\overline{\mathbf{C}}}_{11}^{{\mathbf{k}}} {{\varvec{\upalpha}}}^{2} - 2{\overline{\mathbf{C}}}_{16}^{{\mathbf{k}}} {\mathbf{\alpha \beta }} \\ & \quad - {\overline{\mathbf{C}}}_{66}^{{\mathbf{k}}} {{\varvec{\upbeta}}}^{2} - \frac{1}{{{\mathbf{R}}_{1} }}\left( {\frac{2}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{55}^{{\mathbf{k}}} , \\ \end{aligned} $$
$$ {\overline{\mathbf{A}}}_{12}^{{\mathbf{k}}} = {\overline{\mathbf{C}}}_{45}^{{\mathbf{k}}} ({\mathbf{s}}^{{\mathbf{k}}} )^{2} + 2\frac{{{\overline{\mathbf{C}}}_{45}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }}{\mathbf{s}}^{{\mathbf{k}}} - {\overline{\mathbf{C}}}_{16}^{{\mathbf{k}}} {{\varvec{\upalpha}}}^{2} - \left( {{\overline{\mathbf{C}}}_{12}^{{\mathbf{k}}} + {\overline{\mathbf{C}}}_{66}^{{\mathbf{k}}} } \right){\mathbf{\alpha \beta }} - {\overline{\mathbf{C}}}_{26}^{{\mathbf{k}}} {{\varvec{\upbeta}}}^{2} - \frac{1}{{{\mathbf{R}}_{2} }}\left( {\frac{2}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{45}^{{\mathbf{k}}} , $$
$$ \begin{aligned} {\overline{\mathbf{A}}}_{13}^{{\mathbf{k}}} & = \left\{ {\left( {{\overline{\mathbf{C}}}_{13}^{{\mathbf{k}}} + {\overline{\mathbf{C}}}_{55}^{{\mathbf{k}}} } \right){{\varvec{\upalpha}}} + \left( {{\overline{\mathbf{C}}}_{36}^{{\mathbf{k}}} + {\overline{\mathbf{C}}}_{45}^{{\mathbf{k}}} } \right){{\varvec{\upbeta}}}} \right\}{\mathbf{s}}^{{\mathbf{k}}} + \left\{ {\frac{{{\overline{\mathbf{C}}}_{11}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} + \frac{{{\overline{\mathbf{C}}}_{12}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }} + \left( {\frac{2}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{55}^{{\mathbf{k}}} } \right\}{{\varvec{\upalpha}}} \\ & \quad + \left\{ {\frac{{{\overline{\mathbf{C}}}_{16}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} + \frac{{{\overline{\mathbf{C}}}_{26}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }} + \left( {\frac{2}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{45}^{{\mathbf{k}}} } \right\}{{\varvec{\upbeta}}}, \\ \end{aligned} $$
$$ {\overline{\mathbf{A}}}_{14}^{{\mathbf{k}}} = \left\{ {\left( {{\overline{\mathbf{e}}}_{31}^{{\mathbf{k}}} + {\overline{\mathbf{e}}}_{15}^{{\mathbf{k}}} } \right){{\varvec{\upalpha}}} + \left( {{\overline{\mathbf{e}}}_{36}^{{\mathbf{k}}} + {\overline{\mathbf{e}}}_{25}^{{\mathbf{k}}} } \right){{\varvec{\upbeta}}}} \right\}{\mathbf{s}}^{{\mathbf{k}}} + \left( {\frac{2}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right)\left( {{\overline{\mathbf{e}}}_{15}^{{\mathbf{k}}} {{\varvec{\upalpha}}} + {\overline{\mathbf{e}}}_{25}^{{\mathbf{k}}} {{\varvec{\upbeta}}}} \right), $$
$$ \begin{aligned} {\overline{\mathbf{A}}}_{21}^{{\mathbf{k}}} & = {\overline{\mathbf{A}}}_{12}^{{\mathbf{k}}} ,\;{\overline{\mathbf{A}}}_{22}^{{\mathbf{k}}} = {\overline{\mathbf{C}}}_{44}^{{\mathbf{k}}} ({\mathbf{s}}^{{\mathbf{k}}} )^{2} + \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{44}^{{\mathbf{k}}} ({\mathbf{s}}^{{\mathbf{k}}} ) - {\overline{\mathbf{C}}}_{66}^{{\mathbf{k}}} {{\varvec{\upalpha}}}^{2} - 2{\overline{\mathbf{C}}}_{26}^{{\mathbf{k}}} {\mathbf{\alpha \beta }} \\ & \quad - {\overline{\mathbf{C}}}_{22}^{{\mathbf{k}}} {{\varvec{\upbeta}}}^{2} - \frac{1}{{{\mathbf{R}}_{2} }}\left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{2}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{44}^{{\mathbf{k}}} , \\ \end{aligned} $$
$$ \begin{aligned} {\overline{\mathbf{A}}}_{23}^{{\mathbf{k}}} & = \left\{ {\left( {{\overline{\mathbf{C}}}_{36}^{{\mathbf{k}}} + {\overline{\mathbf{C}}}_{45}^{{\mathbf{k}}} } \right){{\varvec{\upalpha}}} + \left( {{\overline{\mathbf{C}}}_{23}^{{\mathbf{k}}} + {\overline{\mathbf{C}}}_{44}^{{\mathbf{k}}} } \right){{\varvec{\upbeta}}}} \right\}s^{k} \\ & \quad + \left\{ {\frac{{{\overline{\mathbf{C}}}_{16}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} + \frac{{{\overline{\mathbf{C}}}_{26}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }} + \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{2}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{45}^{{\mathbf{k}}} } \right\}{{\varvec{\upalpha}}} + \left\{ {\frac{{{\overline{\mathbf{C}}}_{12}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} + \frac{{{\overline{\mathbf{C}}}_{22}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }} + \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{2}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{45}^{{\mathbf{k}}} } \right\}{{\varvec{\upbeta}}}, \\ \end{aligned} $$
$$ {\overline{\mathbf{A}}}_{24}^{{\mathbf{k}}} = \left\{ {\left( {{\overline{\mathbf{e}}}_{14}^{{\mathbf{k}}} + {\overline{\mathbf{e}}}_{36}^{{\mathbf{k}}} } \right){{\varvec{\upalpha}}} + \left( {{\overline{\mathbf{e}}}_{24}^{{\mathbf{k}}} + {\overline{\mathbf{e}}}_{32}^{{\mathbf{k}}} } \right){{\varvec{\upbeta}}}} \right\}{\mathbf{s}}^{{\mathbf{k}}} + \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{2}{{{\mathbf{R}}_{2} }}} \right)\left( {{\overline{\mathbf{e}}}_{14}^{{\mathbf{k}}} {{\varvec{\upalpha}}} + {\overline{\mathbf{e}}}_{24}^{{\mathbf{k}}} {{\varvec{\upbeta}}}} \right), $$
$$ \begin{aligned} {\overline{\mathbf{A}}}_{31}^{{\mathbf{k}}} & = \left\{ {\left( {{\overline{\mathbf{C}}}_{13}^{{\mathbf{k}}} + {\overline{\mathbf{C}}}_{55}^{{\mathbf{k}}} } \right){{\varvec{\upalpha}}} + \left( {{\overline{\mathbf{C}}}_{36}^{{\mathbf{k}}} + {\overline{\mathbf{C}}}_{45}^{{\mathbf{k}}} } \right){{\varvec{\upbeta}}}} \right\}{\mathbf{s}}^{{\mathbf{k}}} \\ & \quad + \left\{ {\left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{13}^{{\mathbf{k}}} - \frac{{{\overline{\mathbf{C}}}_{11}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} - \frac{{{\overline{\mathbf{C}}}_{12}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }} - \frac{{{\overline{\mathbf{C}}}_{55}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }}} \right\}{{\varvec{\upalpha}}} \\ & \quad + \left\{ {\left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{36}^{{\mathbf{k}}} - \frac{{{\overline{\mathbf{C}}}_{16}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} - \frac{{{\overline{\mathbf{C}}}_{26}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }} - \frac{{{\overline{\mathbf{C}}}_{45}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }}} \right\}{{\varvec{\upbeta}}}, \\ \end{aligned} $$
$$ \begin{aligned} {\overline{\mathbf{A}}}_{32}^{{\mathbf{k}}} & = \left\{ {\left( {{\overline{\mathbf{C}}}_{36}^{{\mathbf{k}}} + {\overline{\mathbf{C}}}_{45}^{{\mathbf{k}}} } \right){{\varvec{\upalpha}}} + \left( {{\overline{\mathbf{C}}}_{23}^{{\mathbf{k}}} + {\overline{\mathbf{C}}}_{44}^{{\mathbf{k}}} } \right){{\varvec{\upbeta}}}} \right\}{\mathbf{s}}^{{\mathbf{k}}} \\ & \quad + \left\{ {\left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{36}^{{\mathbf{k}}} - \frac{{{\overline{\mathbf{C}}}_{16}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} - \frac{{{\overline{\mathbf{C}}}_{26}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }} - \frac{{{\overline{\mathbf{C}}}_{45}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }}} \right\}{{\varvec{\upalpha}}} \\ & \quad + \left\{ {\left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{23}^{{\mathbf{k}}} - \frac{{{\overline{\mathbf{C}}}_{12}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} - \frac{{{\overline{\mathbf{C}}}_{22}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }} - \frac{{{\overline{\mathbf{C}}}_{44}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }}} \right\}{{\varvec{\upbeta}}}, \\ \end{aligned} $$
$$ \begin{aligned} {\overline{\mathbf{A}}}_{33}^{{\mathbf{k}}} & = {\overline{\mathbf{C}}}_{33}^{{\mathbf{k}}} ({\mathbf{s}}^{{\mathbf{k}}} )^{2} + \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{33}^{{\mathbf{k}}} ({\mathbf{s}}^{{\mathbf{k}}} ) + \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right)\left( {\frac{{{\overline{\mathbf{C}}}_{13}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} + \frac{{{\overline{\mathbf{C}}}_{23}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }}} \right) \\ & \quad - \frac{{{\overline{\mathbf{C}}}_{11}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1}^{2} }} - 2\frac{{{\overline{\mathbf{C}}}_{12}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} {\mathbf{R}}_{2} }} - \frac{{{\overline{\mathbf{C}}}_{22}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2}^{2} }} - {\overline{\mathbf{C}}}_{55}^{{\mathbf{k}}} {{\varvec{\upalpha}}}^{2} - 2{\overline{\mathbf{C}}}_{45}^{{\mathbf{k}}} {\mathbf{\alpha \beta }} - {\overline{\mathbf{C}}}_{44}^{{\mathbf{k}}} {{\varvec{\upbeta}}}^{2} , \\ \end{aligned} $$
$$ \begin{aligned} {\overline{\mathbf{A}}}_{34}^{{\mathbf{k}}} & = {\overline{\mathbf{e}}}_{33}^{{\mathbf{k}}} ({\mathbf{s}}^{{\mathbf{k}}} )^{2} - {\overline{\mathbf{e}}}_{15}^{{\mathbf{k}}} {{\varvec{\upalpha}}}^{2} - \left( {{\overline{\mathbf{e}}}_{14}^{{\mathbf{k}}} + {\overline{\mathbf{e}}}_{15}^{{\mathbf{k}}} } \right){\mathbf{\alpha \beta }} - {\overline{\mathbf{e}}}_{24}^{{\mathbf{k}}} {{\varvec{\upbeta}}}^{2} \\ & \quad + \left\{ {\left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{e}}}_{33}^{{\mathbf{k}}} - \frac{{{\overline{\mathbf{e}}}_{31}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} - \frac{{{\overline{\mathbf{e}}}_{32}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }}} \right\}{\mathbf{s}}^{{\mathbf{k}}} , \\ \end{aligned} $$
$$ {\overline{\mathbf{A}}}_{41}^{{\mathbf{k}}} = \left\{ {({\overline{\mathbf{e}}}_{31}^{{\mathbf{k}}} + {\overline{\mathbf{e}}}_{15}^{{\mathbf{k}}} {)}{{\varvec{\upalpha}}} + ({\overline{\mathbf{e}}}_{25}^{{\mathbf{k}}} + {\overline{\mathbf{e}}}_{36}^{{\mathbf{k}}} {)}{{\varvec{\upbeta}}}} \right\}{\mathbf{s}}^{{\mathbf{k}}} + \left\{ {\left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{e}}}_{31}^{{\mathbf{k}}} - \frac{{{\overline{\mathbf{e}}}_{15}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }}} \right\}{{\varvec{\upalpha}}} + \left\{ {\left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{e}}}_{36}^{{\mathbf{k}}} - \frac{{\mathop {\overline{e}}\nolimits_{25}^{k} }}{{{\mathbf{R}}_{1} }}} \right\}{{\varvec{\upbeta}}}, $$
$$ {\overline{\mathbf{A}}}_{42}^{{\mathbf{k}}} = \left\{ {\left( {{\overline{\mathbf{e}}}_{14}^{{\mathbf{k}}} + {\overline{\mathbf{e}}}_{36}^{{\mathbf{k}}} } \right){{\varvec{\upalpha}}} + \left( {{\overline{\mathbf{e}}}_{24}^{{\mathbf{k}}} + {\overline{\mathbf{e}}}_{32}^{{\mathbf{k}}} } \right){{\varvec{\upbeta}}}} \right\}{\mathbf{s}}^{{\mathbf{k}}} + \left\{ {\left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{e}}}_{36}^{{\mathbf{k}}} - \frac{{{\overline{\mathbf{e}}}_{14}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }}} \right\}{{\varvec{\upalpha}}} + \left\{ {\left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{e}}}_{32}^{{\mathbf{k}}} - \frac{{{\overline{\mathbf{e}}}_{24}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }}} \right\}{{\varvec{\upbeta}}}, $$
$$ \begin{aligned} {\overline{\mathbf{A}}}_{43}^{{\mathbf{k}}} & = {\overline{\mathbf{e}}}_{33}^{{\mathbf{k}}} ({\mathbf{s}}^{{\mathbf{k}}} )^{2} + \left\{ {\left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{e}}}_{33}^{{\mathbf{k}}} + \frac{{{\overline{\mathbf{e}}}_{31}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} + \frac{{{\overline{\mathbf{e}}}_{32}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }}} \right\}{\mathbf{s}}^{{\mathbf{k}}} \\ & \quad - \, {\overline{\mathbf{e}}}_{15}^{{\mathbf{k}}} {{\varvec{\upalpha}}}^{2} - \left( {{\overline{\mathbf{e}}}_{14}^{{\mathbf{k}}} + {\overline{\mathbf{e}}}_{25}^{{\mathbf{k}}} } \right){\mathbf{\alpha \beta }} - {\overline{\mathbf{e}}}_{24}^{{\mathbf{k}}} {{\varvec{\upbeta}}}^{2} \, \\ & \quad + \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right) \, \left( {\frac{{{\overline{\mathbf{e}}}_{31}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} + \frac{{{\overline{\mathbf{e}}}_{32}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }}} \right), \\ \end{aligned} $$
$$ {\overline{\mathbf{A}}}_{44}^{{\mathbf{k}}} = - {\overline{\mathbf{\varepsilon }}}_{33}^{{\mathbf{k}}} ({\mathbf{s}}^{{\mathbf{k}}} )^{2} - \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{\varepsilon }}}_{33}^{{\mathbf{k}}} {\mathbf{s}}^{{\mathbf{k}}} + {\overline{\mathbf{\varepsilon }}}_{11}^{{\mathbf{k}}} {{\varvec{\upalpha}}}^{2} + 2{\overline{\mathbf{\varepsilon }}}_{12}^{{\mathbf{k}}} {\mathbf{\alpha \beta }} + {\overline{\mathbf{\varepsilon }}}_{22}^{{\mathbf{k}}} {{\varvec{\upbeta}}}^{2} , $$
$$ {\mathbf{B}}_{11}^{{\mathbf{k}}} = {\overline{\mathbf{C}}}_{55}^{{\mathbf{k}}} ({\mathbf{r}}^{{\mathbf{k}}} )^{2} + \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{55}^{{\mathbf{k}}} ({\mathbf{r}}^{{\mathbf{k}}} ) - {\overline{\mathbf{C}}}_{11}^{{\mathbf{k}}} {{\varvec{\upalpha}}}^{2} + 2{\overline{\mathbf{C}}}_{16}^{{\mathbf{k}}} {\mathbf{\alpha \beta }} - {\overline{\mathbf{C}}}_{66}^{{\mathbf{k}}} {{\varvec{\upbeta}}}^{2} - \frac{1}{{{\mathbf{R}}_{1} }}\left( {\frac{2}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{55}^{{\mathbf{k}}} , $$
$$ {\mathbf{B}}_{12}^{{\mathbf{k}}} = {\overline{\mathbf{C}}}_{45}^{{\mathbf{k}}} ({\mathbf{r}}^{{\mathbf{k}}} )^{2} + 2\frac{{{\overline{\mathbf{C}}}_{45}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }}{\mathbf{r}}^{{\mathbf{k}}} - {\overline{\mathbf{C}}}_{16}^{{\mathbf{k}}} {{\varvec{\upalpha}}}^{2} + \left( {{\overline{\mathbf{C}}}_{12}^{{\mathbf{k}}} + {\overline{\mathbf{C}}}_{66}^{{\mathbf{k}}} } \right){\mathbf{\alpha \beta }} - {\overline{\mathbf{C}}}_{26}^{{\mathbf{k}}} {{\varvec{\upbeta}}}^{2} - \frac{1}{{{\mathbf{R}}_{2} }}\left( {\frac{2}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{45}^{{\mathbf{k}}} , $$
$$ \begin{aligned} {\mathbf{B}}_{13}^{{\mathbf{k}}} & = \left\{ {\left( {{\overline{\mathbf{C}}}_{13}^{{\mathbf{k}}} + {\overline{\mathbf{C}}}_{55}^{{\mathbf{k}}} } \right){{\varvec{\upalpha}}} - \left( {{\overline{\mathbf{C}}}_{36}^{{\mathbf{k}}} + {\overline{\mathbf{C}}}_{45}^{{\mathbf{k}}} } \right){{\varvec{\upbeta}}}} \right\}{\mathbf{r}}^{{\mathbf{k}}} + \left( {\frac{{{\overline{\mathbf{C}}}_{11}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} + \frac{{{\overline{\mathbf{C}}}_{12}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }}} \right){{\varvec{\upalpha}}}, \\ & \quad - \left( {\frac{{{\overline{\mathbf{C}}}_{16}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} + \frac{{{\overline{\mathbf{C}}}_{26}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }}} \right){{\varvec{\upbeta}}} + \left( {\frac{2}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right)\left( {{\overline{\mathbf{C}}}_{15}^{{\mathbf{k}}} {{\varvec{\upalpha}}} - {\overline{\mathbf{C}}}_{45}^{{\mathbf{k}}} {{\varvec{\upbeta}}}} \right){,} \\ \end{aligned} $$
$$ {\mathbf{B}}_{14}^{{\mathbf{k}}} = \left\{ {\left( {{\overline{\mathbf{e}}}_{31}^{{\mathbf{k}}} { + }{\overline{\mathbf{e}}}_{15}^{{\mathbf{k}}} } \right){{\varvec{\upalpha}}} - \left( {{\overline{\mathbf{e}}}_{36}^{{\mathbf{k}}} { + }{\overline{\mathbf{e}}}_{25}^{{\mathbf{k}}} } \right){{\varvec{\upbeta}}}} \right\}{\mathbf{r}}^{{\mathbf{k}}} + \left( {\frac{2}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right)\left( {{\overline{\mathbf{e}}}_{15}^{{\mathbf{k}}} {{\varvec{\upalpha}}} + {\overline{\mathbf{e}}}_{25}^{{\mathbf{k}}} {{\varvec{\upbeta}}}} \right), $$
$$ \begin{aligned} {\mathbf{B}}_{21}^{{\mathbf{k}}} & = {\mathbf{B}}_{12}^{{\mathbf{k}}} ,{\mathbf{B}}_{22}^{{\mathbf{k}}} = {\overline{\mathbf{C}}}_{44}^{{\mathbf{k}}} ({\mathbf{r}}^{{\mathbf{k}}} )^{2} + \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{44}^{{\mathbf{k}}} ({\mathbf{r}}^{{\mathbf{k}}} ) - {\overline{\mathbf{C}}}_{66}^{{\mathbf{k}}} {{\varvec{\upalpha}}}^{2} + 2{\overline{\mathbf{C}}}_{26}^{{\mathbf{k}}} {\mathbf{\alpha \beta }} \\ & \quad - {\overline{\mathbf{C}}}_{22}^{{\mathbf{k}}} {{\varvec{\upbeta}}}^{2} - \frac{1}{{{\mathbf{R}}_{2} }}\left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{2}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{44}^{{\mathbf{k}}} , \\ \end{aligned} $$
$$ \begin{aligned} {\mathbf{B}}_{23}^{{\mathbf{k}}} & = \left( {\frac{{{\overline{\mathbf{C}}}_{16}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} + \frac{{{\overline{\mathbf{C}}}_{26}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }}} \right){{\varvec{\upalpha}}} - \left( {\frac{{{\overline{\mathbf{C}}}_{12}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} + \frac{{{\overline{\mathbf{C}}}_{22}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }}} \right){{\varvec{\upbeta}}} + \left( {{\overline{\mathbf{C}}}_{36}^{{\mathbf{k}}} + {\overline{\mathbf{C}}}_{45}^{{\mathbf{k}}} } \right){\mathbf{\alpha r}}^{{\mathbf{k}}} - \left( {{\overline{\mathbf{C}}}_{23}^{{\mathbf{k}}} + {\overline{\mathbf{C}}}_{44}^{{\mathbf{k}}} } \right){\mathbf{\beta r}}^{{\mathbf{k}}} , \\ & \quad + \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{2}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{45}^{{\mathbf{k}}} {{\varvec{\upalpha}}} - \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{2}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{44}^{{\mathbf{k}}} {{\varvec{\upbeta}}}, \\ \end{aligned} $$
$$ {\mathbf{B}}_{24}^{{\mathbf{k}}} = \left\{ {\left( {{\overline{\mathbf{e}}}_{36}^{{\mathbf{k}}} + {\overline{\mathbf{e}}}_{14}^{{\mathbf{k}}} } \right){{\varvec{\upalpha}}} - \left( {{\overline{\mathbf{e}}}_{32}^{{\mathbf{k}}} + {\overline{\mathbf{e}}}_{24}^{{\mathbf{k}}} } \right){{\varvec{\upbeta}}}} \right\}{\mathbf{r}}^{{\mathbf{k}}} + \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{2}{{{\mathbf{R}}_{2} }}} \right)\left( {{\overline{\mathbf{e}}}_{14}^{{\mathbf{k}}} {{\varvec{\upalpha}}} - {\overline{\mathbf{e}}}_{24}^{{\mathbf{k}}} {{\varvec{\upbeta}}}} \right){, } $$
$$ \begin{aligned} {\mathbf{B}}_{31}^{{\mathbf{k}}} & = \left\{ {\left( {{\overline{\mathbf{C}}}_{13}^{{\mathbf{k}}} + {\overline{\mathbf{C}}}_{55}^{{\mathbf{k}}} } \right){{\varvec{\upalpha}}} - \left( {{\overline{\mathbf{C}}}_{36}^{{\mathbf{k}}} + {\overline{\mathbf{C}}}_{45}^{{\mathbf{k}}} } \right){{\varvec{\upbeta}}}} \right\}r^{k} \\ & \quad + \left\{ {\left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{13}^{{\mathbf{k}}} - \frac{{{\overline{\mathbf{C}}}_{11}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} - \frac{{{\overline{\mathbf{C}}}_{12}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }} - \frac{{{\overline{\mathbf{C}}}_{55}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }}} \right\}{{\varvec{\upalpha}}} \\ & \quad + \left\{ {\frac{{{\overline{\mathbf{C}}}_{16}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} + \frac{{{\overline{\mathbf{C}}}_{26}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }} + \frac{{{\overline{\mathbf{C}}}_{45}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} - \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{36}^{{\mathbf{k}}} } \right\}{{\varvec{\upbeta}}}, \\ \end{aligned} $$
$$ \begin{aligned} \mathop { \, B}\nolimits_{32}^{k} & = \left\{ {\left( {{\overline{\mathbf{C}}}_{36}^{{\mathbf{k}}} + {\overline{\mathbf{C}}}_{45}^{{\mathbf{k}}} } \right){{\varvec{\upalpha}}} - \left( {{\overline{\mathbf{C}}}_{23}^{{\mathbf{k}}} + {\overline{\mathbf{C}}}_{44}^{{\mathbf{k}}} } \right){{\varvec{\upbeta}}}} \right\}r^{k} \\ & \quad + \left\{ {\left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{36}^{{\mathbf{k}}} - \frac{{{\overline{\mathbf{C}}}_{16}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} - \frac{{{\overline{\mathbf{C}}}_{26}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }} - \frac{{{\overline{\mathbf{C}}}_{45}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }}} \right\}{{\varvec{\upalpha}}} \\ & \quad + \left\{ {\frac{{{\overline{\mathbf{C}}}_{16}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} + \frac{{{\overline{\mathbf{C}}}_{26}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }} + \frac{{{\overline{\mathbf{C}}}_{45}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }} - \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{36}^{{\mathbf{k}}} } \right\}{{\varvec{\upbeta}}}, \\ \end{aligned} $$
$$ \begin{aligned} {\mathbf{B}}_{33}^{{\mathbf{k}}} & = {\overline{\mathbf{C}}}_{33}^{{\mathbf{k}}} ({\mathbf{r}}^{{\mathbf{k}}} )^{2} + \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{C}}}_{33}^{{\mathbf{k}}} ({\mathbf{r}}^{{\mathbf{k}}} ) + \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right)\left( {\frac{{{\overline{\mathbf{C}}}_{13}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} + \frac{{{\overline{\mathbf{C}}}_{23}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }}} \right) \\ & \quad - \frac{{{\overline{\mathbf{C}}}_{11}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1}^{2} }} - 2\frac{{{\overline{\mathbf{C}}}_{12}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} {\mathbf{R}}_{2} }} - \frac{{{\overline{\mathbf{C}}}_{22}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2}^{2} }} - {\overline{\mathbf{C}}}_{55}^{{\mathbf{k}}} {{\varvec{\upalpha}}}^{2} + 2{\overline{\mathbf{C}}}_{45}^{{\mathbf{k}}} {\mathbf{\alpha \beta }} - {\overline{\mathbf{C}}}_{44}^{{\mathbf{k}}} {{\varvec{\upbeta}}}^{2} , \\ \end{aligned} $$
$$ {\mathbf{B}}_{34}^{{\mathbf{k}}} = {\overline{\mathbf{e}}}_{33}^{{\mathbf{k}}} ({\mathbf{r}}^{{\mathbf{k}}} )^{2} - {\overline{\mathbf{e}}}_{15}^{{\mathbf{k}}} {{\varvec{\upalpha}}}^{2} + \left( {{\overline{\mathbf{e}}}_{14}^{{\mathbf{k}}} + {\overline{\mathbf{e}}}_{25}^{{\mathbf{k}}} } \right){\mathbf{\alpha \beta }} - {\overline{\mathbf{e}}}_{24}^{{\mathbf{k}}} {{\varvec{\upbeta}}}^{2} + \left\{ {\left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{e}}}_{33}^{{\mathbf{k}}} - \frac{{{\overline{\mathbf{e}}}_{31}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} - \frac{{{\overline{\mathbf{e}}}_{32}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }}} \right\}{\mathbf{r}}^{{\mathbf{k}}} , $$
$$ \begin{aligned} {\mathbf{B}}_{41}^{{\mathbf{k}}} & = \left\{ {({\overline{\mathbf{e}}}_{31}^{{\mathbf{k}}} + {\overline{\mathbf{e}}}_{15}^{{\mathbf{k}}} {)}{{\varvec{\upalpha}}} - ({\overline{\mathbf{e}}}_{25}^{{\mathbf{k}}} + {\overline{\mathbf{e}}}_{36}^{{\mathbf{k}}} {)}{{\varvec{\upbeta}}}} \right\}r^{k} + \left\{ {\left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{e}}}_{31}^{{\mathbf{k}}} - \frac{{{\overline{\mathbf{e}}}_{15}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }}} \right\}{{\varvec{\upalpha}}} \\ & \quad - \left\{ {\left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{e}}}_{36}^{{\mathbf{k}}} - \frac{{{\overline{\mathbf{e}}}_{25}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }}} \right\}{{\varvec{\upbeta}}}, \\ \end{aligned} $$
$$ \begin{aligned} {\mathbf{B}}_{42}^{{\mathbf{k}}} & = \left\{ {({\overline{\mathbf{e}}}_{14}^{{\mathbf{k}}} + {\overline{\mathbf{e}}}_{36}^{{\mathbf{k}}} {)}{{\varvec{\upalpha}}} - ({\overline{\mathbf{e}}}_{24}^{{\mathbf{k}}} + {\overline{\mathbf{e}}}_{32}^{{\mathbf{k}}} {)}{{\varvec{\upbeta}}}} \right\}{\mathbf{r}}^{{\mathbf{k}}} + \left\{ {\left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{e}}}_{36}^{{\mathbf{k}}} - \frac{{{\overline{\mathbf{e}}}_{14}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }}} \right\}{{\varvec{\upalpha}}} \\ & \quad - \left\{ {\left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{e}}}_{32}^{{\mathbf{k}}} - \frac{{{\overline{\mathbf{e}}}_{24}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }}} \right\}{{\varvec{\upbeta}}}, \\ \end{aligned} $$
$$ \begin{aligned} {\mathbf{B}}_{43}^{{\mathbf{k}}} & = {\overline{\mathbf{e}}}_{33}^{{\mathbf{k}}} ({\mathbf{r}}^{{\mathbf{k}}} )^{2} + \left\{ {\left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{e}}}_{33}^{{\mathbf{k}}} + \frac{{{\overline{\mathbf{e}}}_{31}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} + \frac{{{\overline{\mathbf{e}}}_{32}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }}} \right\}{\mathbf{r}}^{{\mathbf{k}}} + \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right) \, \left( {\frac{{{\overline{\mathbf{e}}}_{31}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{1} }} + \frac{{{\overline{\mathbf{e}}}_{32}^{{\mathbf{k}}} }}{{{\mathbf{R}}_{2} }}} \right) \\ & \quad - {\overline{\mathbf{e}}}_{15}^{{\mathbf{k}}} {{\varvec{\upalpha}}}^{2} - {\overline{\mathbf{e}}}_{24}^{{\mathbf{k}}} {{\varvec{\upbeta}}}^{2} + \left( {{\overline{\mathbf{e}}}_{14}^{{\mathbf{k}}} + {\overline{\mathbf{e}}}_{25}^{{\mathbf{k}}} } \right){\mathbf{\alpha \beta }}, \\ \end{aligned} $$
$$ {\mathbf{B}}_{44}^{{\mathbf{k}}} = - {\overline{\mathbf{\varepsilon }}}_{33}^{{\mathbf{k}}} ({\mathbf{r}}^{{\mathbf{k}}} )^{2} - \left( {\frac{1}{{{\mathbf{R}}_{1} }} + \frac{1}{{{\mathbf{R}}_{2} }}} \right){\overline{\mathbf{\varepsilon }}}_{33}^{{\mathbf{k}}} {\mathbf{r}}^{{\mathbf{k}}} + {\overline{\mathbf{\varepsilon }}}_{11}^{{\mathbf{k}}} {{\varvec{\upalpha}}}^{2} - 2{\overline{\mathbf{\varepsilon }}}_{12}^{{\mathbf{k}}} {\mathbf{\alpha \beta }} +{\overline{\mathbf{\varepsilon }}}_{22}^{{\mathbf{k}}} {{\varvec{\upbeta}}}^{2} $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, B.K., Ray, M.C. Exact solutions for doubly curved laminated cross-ply and antisymmetric angle-ply shell substrate based bimorph piezoelectric energy harvesters. Int J Mech Mater Des 19, 261–284 (2023). https://doi.org/10.1007/s10999-023-09639-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-023-09639-8

Keywords

Navigation