Skip to main content
Log in

Polygonal multiresolution topology optimization of multi-material structures subjected to dynamic loads

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Topology optimization of multi-material structures under dynamic loads is implemented to minimizing compliance on polygonal finite element meshes with multiple volume constraints. A multiresolution scheme is introduced to obtain high resolution de-signs for structural dynamics problems with less computational burden. This multiresolution scheme employs a coarse finite element mesh to fulfil the dynamic analysis, a refined density variable mesh for optimization and a density variable mesh overlapping with the density variable mesh for design configuration representation. To obtain the dynamic response, the HHT-α method is employed. A ZPR (Zhang-Paulino-Ramos Jr.) update scheme is used to update the design variables in association to multiple volume constraints by a sensitivity separation technique. Several numerical examples are presented to demonstrate the effectiveness of the method to solve the topology optimization problems for mul-ti-material structures under dynamic loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Availability of data and materials

The data and materials that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Almeida, S.R.M., Paulino, G.H., Silva, E.C.N.: A simple and effective inverse projection scheme for void distribution control in topology optimization. Struct. Multidiscip. Optim. 39, 359–371 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsoe, M.P., Sigmund, O.: Topology optimization theory, methods and applications. Springer, Berlin (2003)

    MATH  Google Scholar 

  • Blasques, J.P.: Multi-material topology optimization of laminated composite beams with eigenfrequency constraints. Compos. Struct. 111, 45–55 (2014)

    Article  Google Scholar 

  • Chen, J.L., Zhao, Q.H., Zhang, L.: Multi-Material topology optimization of thermo-elastic structures with stress constraint. Mathematics. 10, 1216 (2022)

    Article  Google Scholar 

  • Conde, F.M., Coelho, P.G., Guedes, J.M.: Multi-material and strength-oriented microstructural topology optimization applied to discrete phase and functionally graded materials. Struct. Multidiscip. Optim. 65, 17 (2022)

    Article  MathSciNet  Google Scholar 

  • Costa, M.R., Sohouli, A., Suleman, A.: Multi-scale and multi-material topology optimization of gradient lattice structures using surrogate models. Compos. Struct. 289, 115402 (2022)

    Article  Google Scholar 

  • Du, Y.X., Li, H.Z., Xie, H.H., Tian, Q.H., Zhou, M.X., Luo, Z.: Topology optimization of multiple materials compliant mechanisms based on sequence interpolation model and multigrid method. Chin. J. Mech. Eng. 54, 47–56 (2018)

    Article  Google Scholar 

  • Filipov, E.T., Chun, J., Paulino, G.H., Song, J.: Polygonal multiresolution topology optimization (PolyMTOP) for structural dynamics. Struct. Multidiscip. Optim. 53, 673–694 (2016)

    Article  Google Scholar 

  • Gan, N., Wang, Q.X.: Topology optimization of multiphase materials with dynamic and static characteristics by BESO method. Adv. Eng. Softw. 151, 102928 (2021)

    Article  Google Scholar 

  • Gangl, P.: A multi-material topology optimization algorithm based on the topological derivative. Comput. Method. Appl. Mech. Eng. 366, 113090 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Ghasemi, H., Park, H.S., Rabczuk, T.: A multi-material level set-based topology optimization of flexoelectric composites. Comput. Methods. Appl. Mech. Eng. 332, 47–62 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Giraldo-Londono, O., Paulino, G.H.: Fractional topology optimization of periodic multi-material viscoelastic microstructures with tailored energy dissipation. Comput. Method. Appl. Mech. Eng. 372, 113307 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Giraldo-Londono, O., Mirabella, L., Dalloro, L., Paulino, G.H.: Multi-material thermomechanical topology optimization with applications to additive manufacturing: design of main composite part and its support structure. Comput. Method. Appl. Mech. Eng. 363, 112812 (2020a)

    Article  MathSciNet  MATH  Google Scholar 

  • Giraldo-Londono, O., Mirabella, L., Dalloro, L., Paulino, G.H.: Multi-material thermomechanical topology optimization with applications to additive manufacturing: design of main composite part and its support structure. Comput. Methods. Appl. Mech. Eng. 363, 112812 (2020b)

    Article  MathSciNet  MATH  Google Scholar 

  • Groen, J.P., Langelaar, M., Sigmund, O., Ruess, M.: Higher-order multi-resolution topology optimization using the finite cell method. Int. J. Numer. Methods Eng. 110, 903–920 (2017)

    Article  MathSciNet  Google Scholar 

  • Habibian, A., Sohouli, A., Kefal, A., Nadler, B., Yildiz, M., Suleman, A.: Multi-material topology optimization of structures with discontinuities using Peridynamics. Compos. Struct. 258, 1–37 (2020)

    Google Scholar 

  • Han, D., Lee, H.: Recent advances in multi-material additive manufacturing: Methods and applications. Curr. Opin. Chem. Eng. 28, 158–166 (2020)

    Article  Google Scholar 

  • Hilber, H.M., Hughes, T.J., Taylor, R.L.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 5, 283–292 (1977)

    Article  Google Scholar 

  • Huang, X., Li, W.: A new multi-material topology optimization algorithm and selection of candidate materials. Comput. Method. Appl. Mech. Eng. 386, 114114 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Jensen, J.S., Nakshatrala, P.B., Tortorelli, D.A.: On the consistency of adjoint sensitivity analysis for structural optimization of linear dynamic problems. Struct. Multidiscip. Optim. 48, 831–837 (2014)

    Article  MathSciNet  Google Scholar 

  • Khader, M.H., Ghasemi, H., Zhuang, X., Rabczuk, T.: Multilevel Monte Carlo method for topology optimization of flexoelectric composites with uncertain material properties. Eng. Anal. Bound. Elem. 134, 412–418 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, H., Luo, Z., Xiao, M., Gao, L., Gao, J.: A new multiscale topology optimization method for multiphase composite structures of frequency response with level sets. Comput. Methods Appl. Mech. Eng. 356, 116–144 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Liang, X., Du, J.B.: Concurrent multi-scale and multi-material topological optimization of vibro-acoustic structures. Comput. Methods Appl. Mech. Eng. 349, 117–148 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, J., Ma, Y.: A new multi-material level set topology optimization method with the length scale control capability. Comput. Method. Appl. Mech. Eng. 329, 444–463 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Long, K., Gu, X.G., Wang, X.: Lightweight design method for continuum structure under vibration using multiphase materials. Acta Aeronautica Et Astronautica Sinica. 38, 134–143 (2017)

    Google Scholar 

  • Nguyen, T.H., Paulino, G.H., Song, J., Le, C.H.: A computational paradigm for multiresolution topology optimization (MTOP). Struct. Multidiscip. Optim. 41, 525–539 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen-Hoang, S., Nguyen-Xuan, H.: A polytree-based adaptive polygonal finite element method for topology optimization. Int. J. Numer. Methods Eng. 110, 1–48 (2017)

    MathSciNet  Google Scholar 

  • Noda, M., Noguchi, Y., Yamada, T.: Extended level set method: a multiphase representation with perfect symmetric property, and its application to multi-material topology optimization. Comput. Methods. Appl. Mech. Eng. 393, 114742 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Park, J., Sutradhar, A.: A multi-resolution method for 3D multi-material topology optimization. Comput. Method. Appl. Mech. Eng. 285, 571–586 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Sander, E.D., Pereir, A.A., Aguilo, M.A., Paulino, G.H.: PolyMat: an efficient Matlab code for multi-material topology optimization. Struct. Multidiscip. Optim. 58, 2727–2759 (2018)

    Article  MathSciNet  Google Scholar 

  • Sigmund, O., Maute, K.: Topology optimization approaches. Struct. Multidiscip. Optim. 48, 1031–1055 (2013)

    Article  MathSciNet  Google Scholar 

  • Stolpe, M., Svanberg, K.: An alternative interpolation scheme for minimum compliance topology optimization. Struct. Multidiscip. Optim. 22(2), 116–124 (2001)

    Article  Google Scholar 

  • Sukumar, N.: Construction of polygonal interpolants: a maximum entropy approach. Comput. Methods Appl. Mech. Eng. 61, 2159–2181 (2004)

    MathSciNet  MATH  Google Scholar 

  • Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes. Struct. Multidiscip. Optim. 45, 329–357 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • van der Kolk, M., van der Veen, G.J., de Vreugd, J., Langelaar, M.: Multi-material topology optimization of viscoelastically damped structures using a parametric level set method. J. Vib. Control. 23(15), 2430–2443 (2015)

    Article  MathSciNet  Google Scholar 

  • Vantyghem, G., Boel, V., Steeman, M., Corte, W.D.: Multi-material topology optimization involving simultaneous structural and thermal analyses. Struct. Multidiscip. Optim. 59, 731–743 (2019)

    Article  Google Scholar 

  • Wallin, M., Ivarsson, N., Ristinmaa, M.: Large strain phase-field-based multi-material topology optimization. Int. J. Numer. Methods Eng. 104, 887–904 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, M.Y., Wang, X.M., Guo, D.M.: A level set method for structural topology optimization. Comput. Method. Appl. m. 192, 227–246 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, F., Lazarov, B.S., Sigmund, O.: On projection methods, convergence and robust formulations in topology optimization. Struct. Multidiscip. Optim. 43, 767–784 (2011)

    Article  MATH  Google Scholar 

  • Wang, X., Hu, P., Long, K.: Multiphase material layout optimization considering embedding movable holes. Chinese J. Theoret. Appl. Mech. 51, 852–862 (2019)

    Google Scholar 

  • Wang, X., Long, K., Meng, Z., Yu, B., Cheng, C.Z.: Explicit multi-material topology optimization embedded with variable-size movable holes using moving morphable bars. Eng. Optimiz. 53, 1212–1229 (2021)

    Article  MathSciNet  Google Scholar 

  • Xu, G., Zhang, W., Zhong, W.: Doing topology optimization explicitly and geometrically-a new Moving Morphable Components based framework. J. Appl. Mech-T Asme. 81, 081009 (2014)

    Article  Google Scholar 

  • Xue, L., Wen, G.L., Wang, H.X., Liu, J.: Eigenvectors-guided topology optimization to control the mode shape and suppress the vibration of the multi-material plate. Comput. Method. Appl. m. 391, 114560 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Yan, H., Wu, X.M.: Multi-material topology optimization for heat transfer structure based on ordered-EAMP model. J. Aerospace Power 36, 1007–1021 (2021)

    Google Scholar 

  • Yang, X.T., Li, M.: Discrete multi-material topology optimization under total mass constraint. Comput. Aided. Design. 102, 182–192 (2018)

    Article  MathSciNet  Google Scholar 

  • Yu, L.H., Rong, J.H., Tang, C.T., Li, F.Y.: Multi-phase material structural optimization design based on feasible domain adjustment. Acta Aeronautica Et Astronautica Sinica. 39, 117–133 (2018)

    Google Scholar 

  • Yun, K.S., Youn, S.K.: Multi-material topology optimization of viscoelastically damped structures under time-dependent loading. Finite. Elem. Anal Des. 123, 9–18 (2017)

    Article  MathSciNet  Google Scholar 

  • Zhang, X., Kang, Z.: Dynamic topology optimization of piezoelectric structures with active control for reducing transient response. Comput. Methods. Appl. Mech. Eng. 281, 200–219 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, W.X., Song, J.F., Zhou, J.H., Du, Z.L., Zhu, Y.C., Sun, Z., Guo, X.: Topology optimization with multiple materials via moving morphable component (MMC) method. Int. J. Numer. Methods Eng. 113, 1653–1675 (2017)

    Article  MathSciNet  Google Scholar 

  • Zhang, X., Paulino, G.H., Ramos, A.S.: Multi-material topology optimization with multiple volume constraints: a general approach applied to ground structures with material nonlinearity. Struct. Multidiscip. Optim. 57, 161–182 (2018)

    Article  MathSciNet  Google Scholar 

  • Zhao, J., Wang, C.: Dynamic response topology optimization in the time domain using model reduction method. Struct. Multidiscip. Optim. 53, 101–114 (2016)

    Article  MathSciNet  Google Scholar 

  • Zhou, M., Geng, D.: Multi-scale and multi-material topology optimization of channel-cooling cellular structures for thermomechanical behaviors. Comput. Method. Appl. Mech. Eng. 383, 113896 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, B.L., Zhang, X.M., Li, H., Wang, R.X., Liu, M., Li, H.: Topology optimization of multi-material compliant mechanisms using node-density interpolation scheme. Chin. J. Mech. Eng. 57, 53–61 (2021)

    Article  Google Scholar 

  • Zuo, W., Saitou, K.: Multi-material topology optimization using ordered SIMP interpolation. Struct. Multidiscip. Optim. 55, 477–491 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors appreciate the polygonal finite element program provided by Talischi C et al. for research purposes. This work was supported by the National Natural Science Foundation of China under Grant No. 51505096, and the Natural Science Foundation of Heilongjiang Province under Grant No. LH2020E064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xudong Jiang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Ma, J. & Teng, X. Polygonal multiresolution topology optimization of multi-material structures subjected to dynamic loads. Int J Mech Mater Des 19, 351–373 (2023). https://doi.org/10.1007/s10999-022-09631-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-022-09631-8

Keywords

Navigation