Skip to main content
Log in

A linear quadrilateral shell element for laminated composites

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

The concentration of the present investigation is on the development of a quadrilateral shell element for the deformation analysis of composite laminates. For this purpose, a higher-order shell model with 12 parameters is adopted along with the three-dimensional state of stress. The principle of virtual work is implemented to derive the stiffness matrix and the load vector for the four-node shell element. In order to verify the performance of the higher-order shell element developed herein for the treatment of laminated composites, some benchmarks are solved and compared with solutions available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Ahmed, A., Kapuria, S.: A four-node facet shell element for laminated shells based on the third order zigzag theory. Compos. Struct. 158, 112–127 (2016)

    Article  Google Scholar 

  • Arnold, D.N., Brezzi, F.: Locking-free finite element methods for shells. Math. Comput. 66(217), 1–15 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Başar, Y.: Finite-rotation theories for composite laminates. Acta Mech. 98(1–4), 159–176 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Beheshti, A.: Novel quadrilateral elements based on explicit Hermite polynomials for bending of Kirchhoff-Love plates. Comput. Mech. 62(5), 1199–1211 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Bischoff, M., KU Bletzinger, WA Wall, and E. Ramm, Models and Finite Elements for Thin-Walled Structures, in Encyclopedia of ComputationalMechanics, RdB E Stein, TJR Hughes, Editor, JohnWiley&Sons (2004)

  • Bramble, J.H., Sun, T.: A locking-free finite element method for Naghdi shells. J. Comput. Appl. Math. 89(1), 119–133 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Casanova, C.F., Gallego, A.: NURBS-based analysis of higher-order composite shells. Compos. Struct. 104, 125–133 (2013)

    Article  Google Scholar 

  • Chapelle, D., Oliveira, D.L., Bucalem, M.L.: MITC elements for a classical shell model. Comput. Struct. 81(8–11), 523–533 (2003)

    Article  Google Scholar 

  • Cho, M., Roh, H.Y.: Development of geometrically exact new shell elements based on general curvilinear co-ordinates. Int. J. Numer. Meth. Eng. 56(1), 81–115 (2003)

    Article  MATH  Google Scholar 

  • Dvorkin, E.N., Bathe, K.J.: A continuum mechanics based four-node shell element for general non-linear analysis. Eng. Comput. 1(1), 77–88 (1984)

    Article  Google Scholar 

  • Fan, J., Zhang, J.: Analytical Solutions for Thick, Doubly Curved, Laminated Shells. J. Eng. Mech. 118(7), 1338–1356 (1992)

    Google Scholar 

  • Gilewski, W., Sitek, M.: plate finite element with physical shape functions: correctness of the formulation. Arch. Civ. Eng. 63(3), 19–37 (2017)

    Article  Google Scholar 

  • Gruttmann, F., Wagner, W.: A linear quadrilateral shell element with fast stiffness computation. Comput. Methods Appl. Mech. Eng. 194(39–41), 4279–4300 (2005)

    Article  MATH  Google Scholar 

  • Guo, H., Zheng, H.: The linear analysis of thin shell problems using the numerical manifold method. Thin-Walled Structures 124, 366–383 (2018)

    Article  Google Scholar 

  • Guo, H., Zheng, H., Zhuang, X.: Numerical manifold method for vibration analysis of Kirchhoff’s plates of arbitrary geometry. Appl. Math. Model. 66, 695–727 (2019a)

    Article  MathSciNet  MATH  Google Scholar 

  • Guo, H., Zhuang, X., Rabczuk, T.: A Deep Collocation Method for the Bending Analysis of Kirchhoff Plate. Computers, Materials & Continua 59(2), 433–456 (2019b)

    Article  Google Scholar 

  • Hossain, S.J., Sinha, P.K., Sheikh, A.H.: A finite element formulation for the analysis of laminated composite shells. Comput. Struct. 82(20–21), 1623–1638 (2004)

    Article  Google Scholar 

  • Kant, T., Kommineni, J.R.: Geometrically non-linear analysis of doubly curved laminated and sandwich fibre reinforced composite shells with a higher order theory and C° finite elements. J. Reinf. Plast. Compos. 11(9), 1048–1076 (1992)

    Article  Google Scholar 

  • Kant, T., Manjunatha, B.S.: An unsymmetric FRC laminate C° finite element model with 12 degrees of freedom per node. Eng. Comput. 5(4), 300–308 (1988)

    Article  Google Scholar 

  • Kant, T., Swaminathan, K.: Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory. Compos. Struct. 53(1), 73–85 (2001)

    Article  Google Scholar 

  • Khare, R.K., Kant, T., Garg, A.K.: Free vibration of composite and sandwich laminates with a higher-order facet shell element. Compos. Struct. 65(3–4), 405–418 (2004)

    Article  Google Scholar 

  • Kumar, A., Chakrabarti, A., Bhargava, P.: Finite element analysis of laminated composite and sandwich shells using higher order zigzag theory. Compos. Struct. 106, 270–281 (2013)

    Article  Google Scholar 

  • Lu, X., Yang, J.Y., Wu, Y.G., Zhang, F., Li, D.H.: An extended layerwise/solid-element method of stiffened composite plates with delaminations and transverse crack. Int. J. Mech. Mater. Des. 14(3), 345–358 (2017)

    Article  Google Scholar 

  • Macneal, R.H., Harder, R.L.: A proposed standard set of problems to test finite element accuracy. Finite Elem. Anal. Des. 1(1), 3–20 (1985)

    Article  Google Scholar 

  • Manjunatha, B.S., Kant, T.: A Comparison of 9 and 16 Node Quadrilateral Elements Based on Higher-Order Laminate Theories for Estimation of Transverse Stresses. J. Reinf. Plast. Compos. 11(9), 968–1002 (1992)

    Article  Google Scholar 

  • Nie, K., Liu, Y.: Three-dimensional buckling analysis of variable angle tow composite laminated plates. Int. J. Mech. Mater. Des. 17(1), 89–98 (2020)

    Article  Google Scholar 

  • Pandya, B.N., Kant, T.: Finite element analysis of laminated composite plates using a higher-order displacement model. Compos. Sci. Technol. 32(2), 137–155 (1988)

    Article  Google Scholar 

  • Park, K.C., Stanley, G.M.: A curved C0 shell element based on assumed natural-coordinate strains. J. Appl. Mech. 53(2), 278–290 (1986)

    Article  MATH  Google Scholar 

  • Park, T., Kim, K., Han, S.: Linear static and dynamic analysis of laminated composite plates and shells using a 4-node quasi-conforming shell element. Compos. B Eng. 37(2–3), 237–248 (2005)

    Article  Google Scholar 

  • Pontaza, J.P., Reddy, J.N.: Least-squares finite element formulation for shear-deformable shells. Comput. Methods Appl. Mech. Eng. 194(21–24), 2464–2493 (2005)

    Article  MATH  Google Scholar 

  • Rao, K.P.: A rectangular laminated anisotropic shallow thin shell finite element. Comput. Methods Appl. Mech. Eng. 15(1), 13–33 (1978)

    Article  MATH  Google Scholar 

  • Reddy, J.N.: Exact solutions of moderately thick laminated shells. J. Eng. Mech. 110(5), 794–809 (1984)

    Google Scholar 

  • Reddy, J.N., Liu, C.F.: A higher-order shear deformation theory of laminated elastic shells. Int. J. Eng. Sci. 23(3), 319–330 (1985)

    Article  MATH  Google Scholar 

  • Reddy , mechanics of laminated composite plates and shells. Boca Raton: CRC Press (2003)

  • Seide, P., Chaudhuri, R.A.: Triangular finite element for analysis of thick laminated shells. Int. J. Numer. Meth. Eng. 24(8), 1563–1579 (1987)

    Article  MATH  Google Scholar 

  • Simo, J.C., Fox, D.D., Rifai, M.S.: On a stress resultant geometrically exact shell model Part II: The linear theory. Comput Asp, Comput Methods Appl Mech Eng 73(1), 53–92 (1989)

    Article  MATH  Google Scholar 

  • Somashekar, B.R., Prathap, G., Babu, C.R.: A field-consistent, four-noded, laminated, anisotropic plate/shell element. Comput. Struct. 25(3), 345–353 (1987)

    Article  MATH  Google Scholar 

  • To, C.W.S., Wang, B.: Hybrid strain-based three-node flat triangular laminated composite shell elements. Finite Elem. Anal. Des. 28(3), 177–207 (1998)

    Article  MATH  Google Scholar 

  • Turvey, G.J.: Bending of laterally loaded, simply supported, moderately thick, antisymmetrically laminated rectangular plates. Fibre Sci Technol 10(3), 211–232 (1977)

    Article  Google Scholar 

  • Versino, D., Gherlone, M., Di Sciuva, M.: Four-node shell element for doubly curved multilayered composites based on the Refined Zigzag Theory. Compos. Struct. 118, 392–402 (2014a)

    Article  Google Scholar 

  • Versino, D., Mourad, H.M., Williams, T.O.: A global–local discontinuous Galerkin shell finite element for small-deformation analysis of multi-layered composites. Comput. Methods Appl. Mech. Eng. 271, 269–295 (2014b)

    Article  MathSciNet  MATH  Google Scholar 

  • Yaqoob Yasin, M., Kapuria, S.: An efficient layerwise finite element for shallow composite and sandwich shells. Compos Struct 98, 202–214 (2013)

    Article  MATH  Google Scholar 

  • Zhuang, X., Guo, H., Alajlan, N., Zhu, H., Rabczuk, T.: Deep Autoencoder based Energy Method for the Bending, Vibration, and Buckling Analysis of Kirchhoff Plates with transfer learning. Eur. J. Mech. a. Solids 87(1), 104225 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Beheshti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beheshti, A., Ansari, R. A linear quadrilateral shell element for laminated composites. Int J Mech Mater Des 19, 187–206 (2023). https://doi.org/10.1007/s10999-022-09624-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-022-09624-7

Keywords

Navigation