Skip to main content
Log in

Evaluation of moments of performance functions based on polynomial chaos expansions

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Simulating the higher-order statistical moments of response functions is a great challenge to research community in the filed of probabilistic analysis, and generally the polynomial surrogate model can be applied to evaluate these statistical moments. In this study, an analytical solution is developed for calculating the first four raw moments of response functions. Then, a novel criterion is proposed to choose the best analytical formulas that gives the most accurate values of response functions. The intrusive and non-intrusive PC expansion models are considered. Several applications are provided to demonstrate the accuracy and efficiency of the developed model, in which Monte Carlo methods are adopted as an exact criterion for comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abramowitz, M., Stegum, I.E.: Handbook of Mathematical Functions. Dover, New York (1972)

    Google Scholar 

  • Cai, C.H., Lu, Z.H., Xu, J., Zhao, Y.G.: Efficient algorithm for evaluation of statistical moments of performance functions. J. Eng. Mech. 145(1), 06018007 (2019)

    Article  Google Scholar 

  • Fan, W.L., Wei, J.H., Ang, A.H.-S., Li, Z.L.: Adaptive estimation of statistical moments of the responses of random systems. Probab. Eng. Mech. 43, 50–67 (2016)

    Article  Google Scholar 

  • Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numer. Algorithms. 18(3–4), 209–232 (1998)

    Article  MathSciNet  Google Scholar 

  • Ghanem, R.: Ingredients for a general purpose stochastic finite elements implementation. Comput. Methods Appl. Mech. Eng. 168(1), 19–34 (1999)

    Article  MathSciNet  Google Scholar 

  • Ghanem, R., Spanos, P.D.: Stochastic Finite Element: A Spectral Approach. Courier Dover Publications, Springer, New York, Mineola (2003)

    MATH  Google Scholar 

  • He, J., Gao, S.B., Gong, J.: A sparse grid stochastic collocation method for structural reliability analysis. Struct. Saf. 51, 29–34 (2014)

    Article  Google Scholar 

  • Huang, X., Zhang, Y.: Reliability-sensitivity analysis using dimension reduction methods and saddlepoint approximations. Int. J. Numer. Meth. Eng. 93(8), 857–886 (2013)

    Article  MathSciNet  Google Scholar 

  • Isaacson, E., Keller, H.B.: Analysis of Numerical Methods. Courier Corporation, New York (2012)

    MATH  Google Scholar 

  • Liu, P.L., Der Kiureghian, A.: Multivariate distribution models with prescribed marginals and covariances. Probab. Eng. Mech. 1(2), 105–112 (1986)

    Article  Google Scholar 

  • Lu, Z.H., Cai, C.H., Xu, J., Zhao, Y.G.: Structural reliability analysis including correlated random variables based on third-moment transformation. J. Struct. Eng. 143(8), 04017067 (2017)

    Article  Google Scholar 

  • Ni, P.H., Xia, Y., Li, J., Hao, H.: Using polynomial chaos expansion for uncertainty and sensitivity analysis of bridge structures. Mech. Syst. Signal. Process. 119, 293–311 (2019)

    Article  Google Scholar 

  • Rahman, S., Xu, H.: A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics. Probab. Eng. Mech. 19(4), 393–408 (2004)

    Article  Google Scholar 

  • Rajan, A., Kuang, Y.C., Ooi, M.P.L., Demidenko, S.N.: Benchmark test distributions for expanded uncertainty evaluation algorithms. IEEE Trans. Instrum. Meas. 65(5), 1022–1034 (2016)

    Article  Google Scholar 

  • Rao, B.N., Chowdhury, R.: Factorized high dimensional model representation for structural reliability analysis. Eng. Comput. 25(8), 708–738 (2008)

    Article  Google Scholar 

  • Rosenblatt, M.: Remarks on a multivariate transformation. Ann. Math. Stat. 23(3), 470–472 (1952)

    Article  MathSciNet  Google Scholar 

  • Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93, 964–979 (2008)

    Article  Google Scholar 

  • Sudret, B.: Adaptive Sparse Polynomial Chaos Expansion Based on Least Angle Regression. Academic Press Professional Inc (2011)

    MATH  Google Scholar 

  • Wiener, N.: The homogeneous chaos. Am. J. Math. 60(4), 897–936 (1938)

    Article  MathSciNet  Google Scholar 

  • Xu, J., Lu, Z.H.: Evaluation of statistical moments of performance functions based on efficient cubature formulation. J. Eng. Mech. 143(8), 06017007 (2017)

    Article  Google Scholar 

  • Zhang, T.: An improved high-moment method for reliability analysis. Struct. Multidiscip. Optim. 56, 1225–1232 (2017)

    Article  MathSciNet  Google Scholar 

  •  Qiang Zhang, Y.G Zhao, K Kristijan, L Xu. Simplified model for assessing progressive collapse resistance of reinforced concrete frames under an interior column loss. Engineering Structures, 2020, 215:110688.

    Article  Google Scholar 

  • Zhao, Y.G., Lu, Z.H.: Fourth-moment standardization for structural reliability assessment. J. Struct. Eng. 133(7), 916 (2007)

    Article  Google Scholar 

  • Zhao, Y.G., Ono, T.: New point estimates for probability moments. J. Eng. Mech. 126(4), 433–436 (2000a)

    Article  Google Scholar 

  • Zhao, Y.G., Ono, T.: Moment methods for structural reliability. Struct. Saf. 23(1), 47–75 (2000b)

    Article  Google Scholar 

Download references

Acknowledgements

The support is gratefully acknowledged.

Funding

The study is supported by the National Natural Science Foundation of China (Grant No. 51908009; 52008404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Replication of results

All the necessary data to reproduce the results reported here are provided in Sect. 3. Readers can also contact us to get the codes by Email: qiang.zhangbuilding@gmail.com.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Equations for linearization coefficients

1.1 Jocobi polynomials

$$B_{n} ({\text{j}},{\text{k}}) = ( - 1)^{j + k + n} \frac{k!}{{(k + \beta )!}}\tilde{B}_{n} ({\text{j}},{\text{k}})$$

where the computational coefficients \(\tilde{B}_{n} ({\text{j}},{\text{k}})\) starting from

$$\tilde{B}_{j - k - 1} ({\text{j}},{\text{k}}) = 0$$
$$\tilde{B}_{j - k} ({\text{j}},{\text{k}}) = \frac{{[2({\text{j}} - {\text{k}}) + \alpha + \beta + 1]!(2{\text{k}} + \alpha + \beta )!({\text{j}} + \alpha )!({\text{j}} + \beta )!}}{{(2{\text{j}} + \alpha + \beta + 1)!({\text{k}} + \alpha + \beta )!({\text{j}} - {\text{k}} + \alpha )!({\text{j}} - {\text{k}})!{\text{j}}!}}.$$

1.2 Hermite polynomials

$$B_{j + k - 2n} ({\text{j}},{\text{k}}) = \frac{{\gamma_{a} ({\text{j}})\gamma_{a} ({\text{k}})}}{{\gamma_{a} ({\text{j}} + {\text{k}} - 2{\text{n}})}}\sum\limits_{p = 0}^{j/2} {\sum\limits_{q = 0}^{k/2} {\frac{{\gamma_{a} ({\text{j}} + {\text{k}} - 2({\text{p}} + {\text{q}}))}}{{\gamma_{a} ({\text{j}} - 2{\text{p}})\gamma_{a} ({\text{k}} - 2{\text{q}}){\text{p}}!{\text{q}}!}}} } \frac{{( - {\text{n}})_{p + q} }}{n!}$$
$$B_{l} ({\text{j}},{\text{k}}) = \frac{{\sqrt \pi 2^{n} j!k!l!}}{(n - j)!(n - k)!(n - l)!}$$

1.3 Laguerre polynomials

$$B_{j + k - n} (j,k) = \frac{{( - 2)^{n} (j + k - {\text{n}})!}}{(j + k - n + \alpha )!(n)!} \times \sum\limits_{{l = max(0,{\text{n}} - {\text{j}},{\text{n}} - {\text{k}})}}^{n/2} {\left( { - \frac{n}{2}} \right)}_{l} \left( { - \frac{n - 1}{2}} \right)_{l} \frac{(j + k - n + \alpha + l)!}{{(j - n + l)!(k - n + l)!}}.$$

Appendix 2. Efficient Cubature Formula I–III

2.1 Cubature Formula I

$$\begin{aligned} I[{\text{r}}] & = a\left[ {r\left( {\sqrt 2 \eta ,\sqrt 2 \eta , \ldots \sqrt 2 \eta } \right) + r\left( { - \sqrt 2 \eta , - \sqrt 2 \eta , \ldots - \sqrt 2 \eta } \right)} \right] \\ & \quad + \;b\left\{ {\sum\limits_{Permution} {\left[ {{\text{r}}\left( {\sqrt 2 \lambda ,\sqrt 2 \xi , \ldots ,\sqrt 2 \xi } \right) + r\left( { - \sqrt 2 \lambda , - \sqrt 2 \xi , \ldots , - \sqrt 2 \xi } \right)} \right]} } \right\} \\ & \quad + \;c\left\{ {\sum\limits_{Permution} {\left[ {{\text{r}}\left( {\sqrt 2 \mu ,\sqrt 2 \mu ,\sqrt 2 \gamma \ldots ,\sqrt 2 \gamma } \right) + r\left( { - \sqrt 2 \mu , - \sqrt 2 \mu , - \sqrt 2 \gamma , \ldots , - \sqrt 2 \gamma } \right)} \right]} } \right\}. \\ \end{aligned}$$

2.2 Cubature Formula II

$$\begin{aligned} I[{\text{r}}] & = \frac{2}{d + 2}r(0) + \frac{{d^{2} (7 - {\text{d}})}}{{2({\text{d}} + 1)^{2} ({\text{d}} + 2)^{2} }}\sum\limits_{j = 1}^{d + 1} {\left[ {r\left( {\sqrt {d + 2} \times {\text{a}}^{{({\text{j}})}} } \right) + r\left( { - \sqrt {d + 2} \times {\text{a}}^{{({\text{j}})}} } \right)} \right]} \\ & \quad + \;\frac{{2({\text{d}} - 1)}}{{({\text{d}} + 1)^{2} ({\text{d}} + 2)^{2} }}\sum\limits_{j = 1}^{d(d + 2)/2} {\left[ {r\left( {\sqrt {{\text{d}} + 2} \times {\text{b}}^{{({\text{j}})}} } \right) + r\left( { - \sqrt {d + 2} \times {\text{b}}^{{({\text{j}})}} } \right)} \right]} \\ \end{aligned}$$
$$a^{{({\text{j}})}} = (a_{1}^{{({\text{j}})}} ,a_{2}^{{({\text{j}})}} , \ldots ,a_{d}^{{({\text{j}})}} ),{\text{j}} = 1,2, \ldots ,{\text{d}} + 1$$
$$b^{{({\text{j}})}} = \sqrt {\frac{d}{{2({\text{d}} - 1)}}} (a^{{({\text{k}})}} + a^{{({\text{l}})}} ),\;{\text{k}} < {\text{l}},{\text{l}} = 1,2 \ldots {\text{d}} + 1$$
$$a_{i}^{{({\text{j}})}} = \left\{ {\begin{array}{*{20}l} {\left[ {\frac{d + 1}{{d({\text{d}} - {\text{i}} + 2)({\text{d}} - {\text{i}} + 1)}}} \right]^{1/2} } \hfill & {for\;{\text{i}} < {\text{j}}} \hfill \\ {\left[ {\frac{d + 1}{{d({\text{d}} - {\text{i}} + 2)({\text{d}} - {\text{i}} + 1)}}} \right]^{1/2} } \hfill & {for\;{\text{i}} = {\text{j}}} \hfill \\ {0,} \hfill & {for\;{\text{i}} > {\text{j}}} \hfill \\ \end{array} } \right..$$

2.3 Cubature Formula III

$$I({\text{r}}) = \frac{2}{d + 2}r(0) + \frac{4 - d}{{2({\text{d}} + 2)^{2} }}\sum {r(\sqrt {d + 2} , \ldots 0)} + \frac{1}{{({\text{d}} + 2)^{2} }}\sum {r\left( {\sqrt {d/2 + 1} ,\sqrt {d/2 + 1} , \ldots 0} \right)} .$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Xu, L. Evaluation of moments of performance functions based on polynomial chaos expansions. Int J Mech Mater Des 18, 395–405 (2022). https://doi.org/10.1007/s10999-021-09585-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-021-09585-3

Keywords

Navigation