Skip to main content
Log in

Global sensitivity analysis of electromechanical coupling behaviors for flexoelectric nanostructures

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Recent research shows that flexoelectricity may prominently affect the electromechanical coupling responses of elastic dielectrics at the nanoscale. From the perspective of devices design, it is urgent to know how the input parameters affect the electromechanical coupling behaviors of flexoelectric nanostructures. In this work, global sensitivity analysis is applied to elastic dielectric nanoplates to decompose the attribution of each of the parameters. Meanwhile, the existing hierarchical regression is found not suitable for simultaneously evaluating the multicollinearity and high dimensionality problems, when global sensitivity analysis of flexoelectric nanostructures is obtained combining polynomial chaos expansion (PCE). In order to overcome the above issues, the following strategies is proposed: 1) First, an adaptive sparse scheme is employed to build the sparse PCE. The number of terms of the PCE is decreased through choosing the most related polynomials with respect to a given model output. 2) Then, the hierarchical regression can be carried out iteratively via combining with the adaptive-sparse scheme. 3) Finally, the Sobol sensitivity indices are calculated through using these procedures. Further, Sobol sensitivity indices reveal that the thickness is the decisive input parameter that strongly affects the buckling and vibration responses of the flexoelectric nanoplate; the flexoelectric coefficients is the next key parameter that affect the buckling and vibration responses of flexoelectric nanoplate. Our finding also demonstrates that the influence of the flexoelectric coefficient is much stronger than that of the piezoelectric coefficient, which revealed the domination of the flexoelectric effect in ultra-thin piezoelectric nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdollahi, A., Peco, C., Millan, D., Arroyo, M., Arias, I.: Computational evaluation of the flexoelectric effect in dielectric solids. J. Appl. Phys. 116(9), 093502 (2014)

    Article  Google Scholar 

  • Blatman, G., Sudret, B.: Efficient computation of global sensitivity indices using sparse polynomial chaos expansions. Reliab. Eng. Syst. Saf. 95(11), 1216–1229 (2010)

    Article  Google Scholar 

  • Blatman, G., Sudret, B.: Adaptive sparse polynomial chaos expansion based on least angle regression [J]. J. Comput. Phys. 230(6), 2345–2367 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Bu, L., & Zhao, W. (2017). Multi-block partial least squares-polynomial chaos expansion for uncertainty quantification. 12th International Conference on Structural Safety and Reliability, Vienna, Austria, 2017 (6–10 August)

  • Bu, L. Z., Zhao, W., & Wang, W. (2019). Second order hierarchical partial least squares regression-polynomial chaos expansion for global sensitivity and reliability analyses of high-dimensional models. arXiv preprint arXiv :1901.11295.

  • Combe, N., Chassaing, P.M., Demangeot, F.: Surface effects in zinc oxide nanoparticles. Phys. Rev. B 79, 045408 (2009)

    Article  Google Scholar 

  • Cosmo, S.P., Stefano, P., Hao, Y., Guijun, Y., Simone, P., Fabio, C., et al.: Sensitivity analysis of the aquacrop and safye crop models for the assessment of water limited winter wheat yield in regional scale applications. Plos One 12(11), e0187485 (2017)

    Article  Google Scholar 

  • Deng, Q., Liu, L., Sharma, P.: Flexoelectricity in soft materials and biological membranes. J. Mech. Phys. Solids 62, 209–227 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Fabian, V.S., Amir, A., Dragan, D., Gustau, C.: Flexoelectricity in bones. Adv. Mater. 30(21), 1801413 (2018)

    Article  Google Scholar 

  • Feng, X., Yang, B.D., Liu, Y., Wang, Y., Dagdeviren, C., Liu, Z., et al.: Stretchable ferroelectric nanoribbons with wavy configurations on elastomeric substrates. ACS Nano 5(4), 3326 (2011)

    Article  Google Scholar 

  • Formaggia, L., Guadagnini, A., Imperiali, I., & Tamellini, L. (2013). Global sensitivity analysis through polynomial chaos expansion of a basin-scale geochemical compaction c

  • Fu, C., Xu, Y., Yang, Y., Lu, K., Gu, F., Ball, A.: Response analysis of an accelerating unbalanced rotating system with both random and interval variables. J. Sound Vibr. 466, 115047 (2020)

    Article  Google Scholar 

  • Greegar, G., Manohar, C.S.: Global response sensitivity analysis of uncertain structures. Struct. Saf. 58, 94–104 (2016)

    Article  Google Scholar 

  • Hamdia, K.M., Ghasemi, H., Zhuang, X., Alajlan, N., Rabczuk, T.: Sensitivity and uncertainty analysis for flexoelectric nanostructures. Comput. Methods Appl. Mech. Eng. 337, 95–109 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Hu, Z., Mahadevan, S.: Global sensitivity analysis-enhanced surrogate (GSAS) modeling for reliability analysis. Struct. Multidiscip. Optim. 53(3), 501–521 (2016)

    Article  MathSciNet  Google Scholar 

  • Javvaji, B., He, B., Zhuang, X.: The generation of piezoelectricity and flexoelectricity in graphene by breaking the materials symmetries. Nanotechnology 29(22), 225702 (2018)

    Article  Google Scholar 

  • Kundalwal, S.I., Meguid, S.A., Weng, G.J.: Strain gradient polarization in graphene. Carbon 117, 462–472 (2017)

    Article  Google Scholar 

  • Lee, D., Jeon, B.C., Yoon, A., Shin, Y.J., Lee, M.H., Song, T.K., et al.: Flexoelectric control of defect formation in ferroelectric epitaxial thin films. Adv. Mater. 26(29), 5005–5011 (2014)

    Article  Google Scholar 

  • Liang, X., Hu, S., Shen, S.: Size-dependent buckling and vibration behaviors of piezoelectric nanostructures due to flexoelectricity. Smart Mater. Struct. 24(10), 105012 (2015)

    Article  Google Scholar 

  • Liang, X., Hu, S., Shen, S.: Surface effects on the post-buckling of piezoelectric nanowires. Physica E 69, 61–64 (2015b)

    Article  Google Scholar 

  • Liang, X., Yang, W., Hu, S., Shen, S.: Buckling and vibration of flexoelectric nanofilms subjected to mechanical loads. J. Phys. D: Appl. Phys. 49(11), 115307 (2016)

    Article  Google Scholar 

  • Lu, H., Bark, C.W., Esque, D.I.O.D., Alcala, J., Eom, C.B., Catalan, G., et al.: Mechanical writing of ferroelectric polarization. Science 336(6077), 59–61 (2012)

    Article  Google Scholar 

  • Luyi, L., Zhenzhou, L., Jun, F., Bintuan, W.: Moment-independent importance measure of basic variable and its state dependent parameter solution. Struct. Saf. 38, 40–47 (2012)

    Article  Google Scholar 

  • Ma, W., Cross, L.E.: Observation of the flexoelectric effect in relaxor Pb(Mg1/3Nb2/3)O3 ceramics. Appl. Phys. Lett. 78(19), 2920–2921 (2001)

    Article  Google Scholar 

  • Mustafa, H., Barlas, Y., Luis, L.R.: Sensitivity analysis for models with multiple behavior modes: a method based on behavior pattern measures. Syst. Dyn. Rev. 32(3–4), 332–362 (2017)

    Google Scholar 

  • Ni, F., Nguyen, P.H., Cobben, J.F.: Basis-adaptive sparse polynomial chaos expansion for probabilistic power flow. IEEE Trans. Power Syst. 32(1), 694–704 (2016)

    Article  Google Scholar 

  • Ni, F., Nijhuis, M., Nguyen, P.H., Cobben, J.F.: Variance-based global sensitivity analysis for power systems. IEEE Trans. Power Syst. 33(2), 1670–1682 (2018)

    Article  Google Scholar 

  • Owen, A.B.: Better estimation of small Sobol’ sensitivity indices. ACM Trans. Model. Comput. Simul. (TOMACS) 23(2), 11 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Peng, J., Luo, H., He, T., Xu, H., Lin, D.: Elastic dielectric and piezoelectric characterization of 0.70 Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 single crystals. Mater. Lett. 59(6), 640–643 (2005)

    Article  Google Scholar 

  • Pianosi, F., Beven, K., Freer, J., Hall, J.W., Rougier, J., Stephenson, D.B., et al.: Sensitivity analysis of environmental models: a systematic review with practical workflow. Environ. Model. Softw. 79, 214–232 (2016)

    Article  Google Scholar 

  • Qi, Y., Kim, J., Nguyen, T.D., Lisko, B., Purohit, P.K., McAlpine, M.C.: Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 11(3), 1331–1336 (2011)

    Article  Google Scholar 

  • Rogers, J.A., Someya, T., Huang, Y.: Materials and mechanics for stretchable electronics. Science 327(5973), 1603–1607 (2010)

    Article  Google Scholar 

  • Saltelli, A.: Sensitivity analysis for importance assessment. Risk Anal. 22(3), 579–590 (2002)

    Article  Google Scholar 

  • Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S.: Variance based sensitivity analysis of model output design and estimator for the total sensitivity index. Comput. Phys. Commun. 181(2), 259–270 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Saltelli, A., Marivoet, J.: Non-parametric statistics in sensitivity analysis for model output: a comparison of selected techniques. Reliab. Eng. Syst. Saf. 28(2), 229–253 (1990)

    Article  Google Scholar 

  • Shao, Q., Gao, E., Mara, T., Hu, H., Liu, T., Makradi, A.: Global sensitivity analysis of solid oxide fuel cells with Bayesian sparse polynomial chaos expansions. Appl. Energy 260, 114318 (2020)

    Article  Google Scholar 

  • Shen, S., Hu, S.: A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids 58(5), 665–677 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55(1–3), 271–280 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Song, J., Wang, Z.D.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006)

    Article  Google Scholar 

  • Szepietowska, K., Magnain, B., Lubowiecka, I., Florentin, E.: Sensitivity analysis based on non-intrusive regression-based polynomial chaos expansion for surgical mesh modelling. Struct. Multidiscip. Optim. 57(3), 1391–1409 (2018)

    Article  MathSciNet  Google Scholar 

  • Tang, K., Congedo, P.M., Abgrall, R.: Adaptive surrogate modeling by ANOVA and sparse polynomial dimensional decomposition for global sensitivity analysis in fluid simulation. J. Comput. Phys. 314, 557–589 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, G.F., Feng, X.Q.: Surface effects on buckling of nanowires under uniaxial compression. Appl. Phys. Lett. 94(14), 141913 (2009)

    Article  Google Scholar 

  • Wang, G.F., Yang, F.: Postbuckling analysis of nanowires with surface effects. J. Appl. Phys. 109(6), 149 (2011)

    Article  Google Scholar 

  • Wang, X., Zhou, J., Song, J., Liu, J., Xu, N., Wang, Z.L.: Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 6(12), 2768–2772 (2006)

    Article  Google Scholar 

  • Yan, Z., Jiang, L.: Surface effects on the electromechanical coupling and bending behaviours of piezoelectric nanowires. J. Phys. D: Appl. Phys. 44(7), 075404 (2011)

    Article  Google Scholar 

  • Yan, Z., Jiang, L.Y.: Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams. J. Appl. Phys. 113(19), 194102 (2013)

    Article  Google Scholar 

  • Yan, Z., Jiang, L.: Size-dependent bending and vibration behaviour of piezoelectric nanobeams due to flexoelectricity. J. Phys. D Appl. Phys. 46(35), 355502 (2013)

    Article  Google Scholar 

  • Yang, W., Liang, X., Shen, S.: Electromechanical responses of piezoelectric nanoplates with flexoelectricity. Acta Mech. 226(9), 3097–3110 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Yuan, Z., Liang, P., Silva, T., Yu, K., Mottershead, J.E.: Parameter selection for model updating with global sensitivity analysis. Mech. Syst. Signal Process. 115, 483–496 (2019)

    Article  Google Scholar 

  • Yun, W., Lu, Z., Zhang, K., Jiang, X.: An efficient sampling method for variance-based sensitivity analysis. Struct. Saf. 65, 74–83 (2017)

    Article  Google Scholar 

  • Zeinab, A., Qian, D., Liping, L., Pradeep, S.: Using electrets to design concurrent magnetoelectricity and piezoelectricity in soft materials. J. Mater. Res. 30(1), 8 (2014)

    Google Scholar 

  • Zhang, Z., Jiang, L.: Size effects on electromechanical coupling fields of a bending piezoelectric nanoplate due to surface effects and flexoelectricity. J. Appl. Phys. 116(13), 134308 (2014)

    Article  Google Scholar 

  • Zhang, K., Lu, Z., Cheng, L., Xu, F.: A new framework of variance based global sensitivity analysis for models with correlated inputs. Struct. Saf. 55, 1–9 (2015)

    Article  Google Scholar 

  • Zhang, J., Wang, C., Chen, W.: Surface and piezoelectric effects on the buckling of piezoelectric nanofilms due to mechanical loads. Meccanica 49(1), 181–189 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, W., Bu, L.: Global sensitivity analysis with a hierarchical sparse metamodeling method. Mech. Syst. Signal Process. 115, 769–781 (2019)

    Article  Google Scholar 

  • Zubko, P., Catalan, G., Tagantsev, A.K.: Flexoelectric effect in solids. Ann. Rev. Mater. Res. 43, 387 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China (2017YFE0119800) and National Natural Science Foundation of China ( NSFC Grants No. 11802224, and 11602189), China postdoctoral Science Foundation (Grant No. 2018M633495), China State Key Laboratory for Mechanical Structure Strength and Vibration Open−end Foundation (Grant No. SV2019−KF−11). The authors are also grateful for the support from the 111 Project (B18040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Xiao Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XX., Liang, X. Global sensitivity analysis of electromechanical coupling behaviors for flexoelectric nanostructures. Int J Mech Mater Des 18, 21–37 (2022). https://doi.org/10.1007/s10999-021-09566-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-021-09566-6

Keywords

Navigation