Skip to main content
Log in

Elastic buckling of nanoplates based on general third-order shear deformable plate theory including both size effects and surface effects

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

A unified plate model predicting the buckling behaviors is proposed by incorporating both surface and size effects into the general third-order plate theory (GTPT). From the minimum potential energy principle, the governing equations are implemented with presenting the corresponding boundary conditions. Analytic buckling loads for rectangular nanoplates are obtained by considering different boundary conditions. The surface effects, size effects and geometric sizes of nanoplates on the plate instability loads are discussed by using four types of single crystalline metallic nano-materials, gold, silver, copper and nickel. The study reveals that the GTPT is more accurate in predicting the buckling behaviors of nanoplates than the Reddy’s plate theory when surface effects are considered due to the fact that the GTPT can freely satisfy the strain condition on plate surfaces. Further discussion shows that the nonlocal strain gradient GTPT predicts a higher critical buckling load of a nanoplate with increasing high order scale parameter while a lower critical buckling load with increasing nonlocal parameter than the classical GTPT. Moreover, it is found that the increasing in length-to-thickness ratios of the nanoplates enhances the influence of surface effects on the critical buckling loads.

Graphical abstract

A nanoplate with significant surface stresses and the effects on dimensionless critical buckling load factor

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The raw data required to reproduce these findings can be accessed by directly contacting the corresponding author based on a reasonable request.

References

  • Aifantis, E.C.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30(10), 1279–1299 (1992)

    Article  MATH  Google Scholar 

  • Allahyari, E., Asgari, M., Pellicano, F.: Nonlinear strain gradient analysis of nanoplates embedded in an elastic medium incorporating surface stress effects. Eur. Phys. J. Plus 134(5), 191 (2019)

    Article  Google Scholar 

  • Ansari, R., Ashrafi, M.A., Pourashraf, T., Sahmani, S.: Vibration and buckling characteristics of functionally graded nanoplates subjected to thermal loading based on surface elasticity theory. Acta Astronaut 109, 42–51 (2015a)

    Article  Google Scholar 

  • Ansari, R., Gholami, R., Norouzzadeh, A., Darabi, M.A.: Surface stress effect on the vibration and instability of nanoscale pipes conveying fluid based on a size-dependent Timoshenko beam model. Acta Mech. Sinica 31(5), 708–719 (2015b)

    Article  MathSciNet  MATH  Google Scholar 

  • Ansari, R., Gholami, R., Shojaei, M.F., Mohammadi, V., Darabi, M.A.: Surface stress effect on the pull-in instability of hydrostatically and electrostatically actuated rectangular nanoplates with various edge supports. J. Eng. Mater-Technol. 134(4),041013 (2012). https://doi.org/10.1115/1.4007260

    Article  Google Scholar 

  • Ansari, R., Gholami, R., Shojaei, M.F., Mohammadi, V., Sahmani, S.: Surface stress effect on the pull-in instability of circular nanoplates. Acta Astronaut. 102, 140–150 (2014a)

    Article  Google Scholar 

  • Ansari, R., Norouzzadeh, A.: Nonlocal and surface effects on the buckling behavior of functionally graded nanoplates: An isogeometric analysis. Phys. E: Low-Dimens. Syst. Nanostruct. 84, 84–97 (2016)

    Article  Google Scholar 

  • Ansari, R., Sahmani, S.: Surface stress effects on the free vibration behavior of nanoplates. Int. J. Eng. Sci. 49(11), 1204–1215 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Ansari, R., Shahabodini, A., Shojaei, M.F., Mohammadi, V., Gholami, R.: On the bending and buckling behaviors of Mindlin nanoplates considering surface energies. Phys. E: Low-Dimension. Syst. Nanostruct. 57, 126–137 (2014b)

    Article  Google Scholar 

  • Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R., Darabi, M.A.: A nonlinear shear deformable nanoplate model including surface effects for large amplitude vibrations of rectangular nanoplates with various boundary conditions. Int. J. Appl. Mech. 7(05), 1550076 (2015c)

    Article  Google Scholar 

  • Arab, A., Feng, Q.M.: Reliability research on micro- and nano-electromechanical systems: a review. Int. J. Adv. Manuf. Tech.a 74(9–12), 1679–1690 (2014)

    Article  Google Scholar 

  • Assadi, A., Farshi, B., Alinia-Ziazi, A.: Size dependent dynamic analysis of nanoplates. J. Appl. Phys. 107(12), 124310 (2010)

    Article  Google Scholar 

  • Attia, M.A., Mahmoud, F.F.: Size-dependent behavior of viscoelastic nanoplates incorporating surface energy and microstructure effects. Int. J. Mech. Sci. 123, 117–132 (2017)

    Article  Google Scholar 

  • Attia, M.A., Shanab, R.A., Mohamed, S.A., Mohamed, N.A.: Surface energy effects on the nonlinear free vibration of functionally graded timoshenko nanobeams based on modified couple stress theory. Int. J. Struct. Stab. Dyn. 19(11), 1950127 (2019)

    Article  MathSciNet  Google Scholar 

  • Basutkar, R., Sidhardh, S., Ray, M.C.: Static analysis of flexoelectric nanobeams incorporating surface effects using element free Galerkin method. Eur. J. Mech. A Solids 76, 13–24 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Ebrahimi, F., Barati, M.R.: Surface effects on the vibration behavior of flexoelectric nanobeams based on nonlocal elasticity theory. Eur. Phys. J. Plus 132(1), 1–13 (2017)

    Article  Google Scholar 

  • Ebrahimi, F., Barati, M.R.: Dynamic modeling of embedded nanoplate systems incorporating flexoelectricity and surface effects. Microsyst. Technol. 25(1), 175–187 (2019)

    Article  Google Scholar 

  • Ebrahimi, F., Heidari, E.: Surface effects on nonlinear vibration of embedded functionally graded nanoplates via higher order shear deformation plate theory. Mech. Adv. Mater. Struct. 26(8), 671–699 (2019)

    Article  Google Scholar 

  • Eringen, A.C.: On differential-equations of nonlocal elasticity and solutions of screw dislocation and surface-waves. J. Appl. Phys. 54(9), 4703–4710 (1983)

    Article  Google Scholar 

  • Esfahani, S., Khadem, S.E., Mamaghani, A.E.: Size-dependent nonlinear vibration of an electrostatic nanobeam actuator considering surface effects and inter-molecular interactions. Int. J. Mech. Mater. Design 15(3), 489–505 (2019)

    Article  Google Scholar 

  • Fleck, N.A., Hutchinson, J.W.: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41(12), 1825–1857 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Gheshlaghi, B., Hasheminejad, S.M.: Surface effects on nonlinear free vibration of nanobeams. Compos. Part B: Eng. 42(4), 934–937 (2011)

    Article  Google Scholar 

  • Guo, S., He, Y.M., Lei, J., Li, Z.K., Liu, D.B.: Individual strain gradient effect on torsional strength of electropolished microscale copper wires. Scripta Mater. 130, 124–127 (2017)

    Article  Google Scholar 

  • Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978)

    Article  MATH  Google Scholar 

  • He, L.H., Lim, C.W.: Surface Green function for a soft elastic half-space: Influence of surface stress. Int. J. Solids. Struct. 43(1), 132–143 (2006)

    Article  MATH  Google Scholar 

  • Karama, M., Afaq, K.S., Mistou, S.: Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity. Int. J. Solids Struct. 40(6), 1525–1546 (2003)

    Article  MATH  Google Scholar 

  • Karimi, M., Mirdamadi, H.R., Shahidi, A.R.: Shear vibration and buckling of double-layer orthotropic nanoplates based on RPT resting on elastic foundations by DQM including surface effects. Microsyst. Technol. 23(3), 765–797 (2017)

    Article  Google Scholar 

  • Karimi, M., Shahidi, A.R.: Buckling analysis of skew magneto-electro-thermo-elastic nanoplates considering surface energy layers and utilizing the Galerkin method. Appl. Phys. A 124(10), 1–15 (2018)

    Article  Google Scholar 

  • Kim, J., Reddy, J.N.: Analytical solutions for bending, vibration, and buckling of FGM plates using a couple stress-based third-order theory. Compos. Struct. 103, 86–98 (2013)

    Article  Google Scholar 

  • Kim, J., Reddy, J.N.: A general third-order theory of functionally graded plates with modified couple stress effect and the von Kármán nonlinearity: theory and finite element analysis. Acta Mech. 226(9), 2973–2998 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Lei, J., He, Y., Guo, S., Li, Z., Liu, D.: Size-dependent vibration of nickel cantilever microbeams: Experiment and gradient elasticity. Aip Adv. 6(10), 105202 (2016)

    Article  Google Scholar 

  • Li, L., Tang, H., Hu, Y.: Size-dependent nonlinear vibration of beam-type porous materials with an initial geometrical curvature. Compos. Struct. 184, 1177–1188 (2018a)

    Article  Google Scholar 

  • Li, Y.S., Pan, E.: Bending of a sinusoidal piezoelectric nanoplate with surface effect. Compos. Struct. 136, 45–55 (2016)

    Article  MathSciNet  Google Scholar 

  • Li, Z., He, Y., Lei, J., Guo, S., Liu, D., Wang, L.: A standard experimental method for determining the material length scale based on modified couple stress theory. Int. J. Mech. Sci. 141, 198–205 (2018b)

    Article  Google Scholar 

  • Li, Z.R., Lim, C.W., He, L.H.: Stress concentration around a nano-scale spherical cavity in elastic media: effect of surface stress. Eur. J. Mech. A Solids 25(2), 260–270 (2006)

    Article  MATH  Google Scholar 

  • Lim, C.W., He, L.H.: Size-dependent nonlinear response of thin elastic films with nano-scale thickness. Int. J. Mech. Sci. 46(11), 1715–1726 (2004)

    Article  MATH  Google Scholar 

  • Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, F., Tong, L.H., Shen, H.S., Lim, C.W., Xiang, Y.: Assessment of first and third order shear deformation beam theories for the buckling and vibration analysis of nanobeams incorporating surface stress effects. Int. J. Mech. Sci. 186, 105873 (2020)

    Article  Google Scholar 

  • Liu, D.B., He, Y.M., Dunstan, D.J., Zhang, B., Gan, Z.P., Hu, P., Ding, H.M.: Toward a further understanding of size effects in the torsion of thin metal wires: An experimental and theoretical assessment. Int. J. Plasticity 41, 30–52 (2013)

    Article  Google Scholar 

  • Lü, C.F., Chen, W.Q., Lim, C.W.: Elastic mechanical behavior of nano-scaled FGM films incorporating surface energies. Compos. Sci. Technol. 69(7–8), 1124–1130 (2009)

    Article  Google Scholar 

  • Lu, L., Guo, X., Zhao, J.: A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms. Int. J. Eng. Sci. 119, 265–277 (2017)

    Article  Google Scholar 

  • Lu, L., Guo, X.M., Zhao, J.Z.: A unified size-dependent plate model based on nonlocal strain gradient theory including surface effects. Appl. Math. Model. 68, 583–602 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Norouzzadeh, A., Ansari, R.: Isogeometric vibration analysis of functionally graded nanoplates with the consideration of nonlocal and surface effects. Thin-Walled Struct. 127, 354–372 (2018)

    Article  Google Scholar 

  • Reddy, J.N.: A Simple Higher-Order Theory for Laminated Composite Plates. J Appl Mech-T Asme 51(4), 745–752 (1984)

    Article  MATH  Google Scholar 

  • Sahmani, S., Fattahi, A.M.: Small scale effects on buckling and postbuckling behaviors of axially loaded FGM nanoshells based on nonlocal strain gradient elasticity theory. Appl. Math. Mech. 39(4), 561–580 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Shahsavari, D., Karami, B., Mansouri, S.: Shear buckling of single layer graphene sheets in hygrothermal environment resting on elastic foundation based on different nonlocal strain gradient theories. Eur. J. Mech. A: Solids 67, 200–214 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Shenoy, V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71(9), 094104 (2005)

    Article  Google Scholar 

  • Shufrin, I., Eisenberger, M.: Stability and vibration of shear deformable plates––first order and higher order analyses. Int. J. Solids Struct. 42(3), 1225–1251 (2005)

    Article  MATH  Google Scholar 

  • Soldatos, K.P.: A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mech. 94(3), 195–220 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Stolken, J.S., Evans, A.G.: A microbend test method for measuring the plasticity length scale. Acta Mater 46(14), 5109–5115 (1998)

    Article  Google Scholar 

  • Su, J., Xiang, Y., Ke, L.L., Wang, Y.S.: Surface effect on static bending of functionally graded porous nanobeams based on Reddy’s beam theory. Int. J. Struct. Stab. Dyn. 19(06), 1950062 (2019)

    Article  MathSciNet  Google Scholar 

  • Sun, J., Wang, Z., Zhou, Z., Xu, X., Lim, C.W.: Surface effects on the buckling behaviors of piezoelectric cylindrical nanoshells using nonlocal continuum model. Appl. Math. Model. 59, 341–356 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Tong, L.H., Lin, F., Xiang, Y., Shen, H.S., Lim, C.W.: Buckling analysis of nanoplates based on a generic third-order plate theory with shear-dependent non-isotropic surface stresses. Compos. Struct. 265, 113708 (2021)

    Article  Google Scholar 

  • Touratier, M.: An efficient standard plate theory. Int. J. Eng. Sci. 29(8), 901–916 (1991)

    Article  MATH  Google Scholar 

  • Wang, K.F., Wang, B.L.: Combining effects of surface energy and non-local elasticity on the buckling of nanoplates. Micro Nano Lett. 6(11), 941–943 (2011)

    Article  Google Scholar 

  • Wang, K.F., Wang, B.L., Xu, M.H., Yu, A.B.: Influences of surface and interface energies on the nonlinear vibration of laminated nanoscale plates. Compos. Struct. 183, 423–433 (2018)

    Article  Google Scholar 

  • Wong, E.W., Sheehan, P.E., Lieber, C.M.: Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334), 1971–1975 (1997)

    Article  Google Scholar 

  • Yan, Z., Jiang, L.: Surface effects on the electroelastic responses of a thin piezoelectric plate with nanoscale thickness. J. Phys. D: Appl. Phys. 45(25), 255401 (2012a)

    Article  Google Scholar 

  • Yan, Z., Jiang, L.Y.: The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology 22(24), 245703 (2011)

    Article  Google Scholar 

  • Yan, Z., Jiang, L.Y.: Surface effects on the vibration and buckling of piezoelectric nanoplates. EPL (Europhys. Lett.) 99(2), 27007 (2012b)

    Article  Google Scholar 

  • Yan, Z., Jiang, L.Y.: Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints. Proceed. R. Soc. A: Math., Phys. Eng. Sci. 468(2147), 3458–3475 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Youcef, D.O., Kaci, A., Benzair, A., Bousahla, A.A., Tounsi, A.: Dynamic analysis of nanoscale beams including surface stress effects. Smart Struct. Syst. 21(1), 65–74 (2018)

    Google Scholar 

  • Zhang, L.L., Liu, J.X., Fang, X.Q., Nie, G.Q.: Effects of surface piezoelectricity and nonlocal scale on wave propagation in piezoelectric nanoplates. Eur. J. Mech A Solids 46, 22–29 (2014a)

    Article  Google Scholar 

  • Zhang, L.L., Liu, J.X., Fang, X.Q., Nie, G.Q.: Size-dependent dispersion characteristics in piezoelectric nanoplates with surface effects. Phys. E: Low-Dimension. Syst. Nanostruct. 57, 169–174 (2014b)

    Article  Google Scholar 

  • Zhao, Y.P.: Stiction and anti-stiction in MEMS and NEMS. Acta Mech Sinica-Prc 19(1), 1–10 (2003)

    Article  Google Scholar 

  • Zhou, W., Chen, W., Lim, C.W.: Surface effect on the propagation of flexural waves in periodic nano-beam and the size-dependent topological properties. Compos. Struct. 216, 427–435 (2019)

    Article  Google Scholar 

  • Zhu, H., Wang, J., Karihaloo, B.: Effects of surface and initial stresses on the bending stiffness of trilayer plates and nanofilms. J. Mech. Mater. Struct. 4(3), 589–604 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of Jiangxi Province (No. 20202BAB204025), the Australian Research Council (Grant No. DP160104462) and General Research Grant (CityU 11212017) from the Research Grants Council of the Hong Kong Special Administrative Region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. W. Lim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The coefficients in Eq. (19) are.

$$ \begin{gathered} A_{{xx}} = \int_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-\nulldelimiterspace} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-\nulldelimiterspace} 2}}} {\left[ {\frac{{E\left( {R_{1} - z} \right)^{2} }}{{1 - \upsilon ^{2} }} + \frac{{2\upsilon \tau ^{s} z\left( {R_{1} - z} \right)}}{{\left( {1 - \upsilon } \right)h}}} \right]} dz + \left( {\lambda ^{s} + 2\mu ^{s} } \right)\left\{ {\left[ {R_{1} \left( {\frac{h}{2}} \right) - \frac{h}{2}} \right]^{2} + \left[ {R_{1} \left( { - \frac{h}{2}} \right) + \frac{h}{2}} \right]^{2} } \right\} \hfill \\ B_{{xx}} = \int_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-\nulldelimiterspace} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-\nulldelimiterspace} 2}}} {\left[ {\frac{{E\upsilon \left( {R_{1} - z} \right)^{2} }}{{1 - \upsilon ^{2} }} + \frac{{2\upsilon \tau ^{s} z\left( {R_{1} - z} \right)}}{{\left( {1 - \upsilon } \right)h}}} \right]} dz + \left( {\lambda ^{s} + \tau ^{s} } \right)\left\{ {\left[ {R_{1} \left( {\frac{h}{2}} \right) - \frac{h}{2}} \right]^{2} + \left[ {R_{1} \left( { - \frac{h}{2}} \right) + \frac{h}{2}} \right]^{2} } \right\} \hfill \\ C_{{xx}}^{i} = \int_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-\nulldelimiterspace} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-\nulldelimiterspace} 2}}} {\frac{{ER_{i} \left( {R_{1} - z} \right)}}{{1 - \upsilon ^{2} }}dz} + \left( {\lambda ^{s} + 2\mu ^{s} } \right)\left\{ {R_{i} \left( {\frac{h}{2}} \right)\left[ {R_{1} \left( {\frac{h}{2}} \right) - \frac{h}{2}} \right] + R_{i} \left( { - \frac{h}{2}} \right)\left[ {R_{1} \left( { - \frac{h}{2}} \right) + \frac{h}{2}} \right]} \right\} \hfill \\ D_{{xx}}^{i} = \int_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-\nulldelimiterspace} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-\nulldelimiterspace} 2}}} {\frac{{ER_{i} \left( {R_{1} - z} \right)}}{{1 - \upsilon ^{2} }}dz} + \left( {\lambda ^{s} + \tau ^{s} } \right)\left\{ {R_{i} \left( {\frac{h}{2}} \right)\left[ {R_{1} \left( {\frac{h}{2}} \right) - \frac{h}{2}} \right] + R_{i} \left( { - \frac{h}{2}} \right)\left[ {R_{1} \left( { - \frac{h}{2}} \right) + \frac{h}{2}} \right]} \right\} \hfill \\ E_{{xx}} = \int_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-\nulldelimiterspace} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-\nulldelimiterspace} 2}}} {2G\left( {R_{1} - z} \right)^{2} dz} + \left( {2\mu ^{s} - \tau ^{s} } \right)\left\{ {\left[ {R_{1} \left( {\frac{h}{2}} \right) - \frac{h}{2}} \right]^{2} + \left[ {R_{1} \left( { - \frac{h}{2}} \right) + \frac{h}{2}} \right]^{2} } \right\} \hfill \\ F_{{xx}}^{i} = \int_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-\nulldelimiterspace} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-\nulldelimiterspace} 2}}} {GR_{i} \left( {R_{1} - z} \right)dz} + \frac{1}{2}\left( {2\mu ^{s} - \tau ^{s} } \right)\left\{ {R_{i} \left( {\frac{h}{2}} \right)\left[ {R_{1} \left( {\frac{h}{2}} \right) - \frac{h}{2}} \right] + R_{i} \left( { - \frac{h}{2}} \right)\left[ {R_{1} \left( { - \frac{h}{2}} \right) + \frac{h}{2}} \right]} \right\} \hfill \\ G_{{xx}}^{i} = \int_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-\nulldelimiterspace} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-\nulldelimiterspace} 2}}} {\left[ {\frac{{ER_{i} \left( {R_{1} - z} \right)}}{{1 - \upsilon ^{2} }} + \frac{{2\upsilon \tau ^{s} zR_{i} }}{{\left( {1 - \upsilon } \right)h}}} \right]} dz + \left( {\lambda ^{s} + 2\mu ^{s} } \right)\left\{ {R_{i} \left( {\frac{h}{2}} \right)\left[ {R_{1} \left( {\frac{h}{2}} \right) - \frac{h}{2}} \right] + R_{i} \left( { - \frac{h}{2}} \right)\left[ {R_{1} \left( { - \frac{h}{2}} \right) + \frac{h}{2}} \right]} \right\} \hfill \\ H_{{xx}}^{i} = \int_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-\nulldelimiterspace} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-\nulldelimiterspace} 2}}} {\left[ {\frac{{\upsilon ER_{i} \left( {R_{1} - z} \right)}}{{1 - \upsilon ^{2} }} + \frac{{2\upsilon \tau ^{s} zR_{i} }}{{\left( {1 - \upsilon } \right)h}}} \right]} dz + \left( {\lambda ^{s} + \tau ^{s} } \right)\left\{ {R_{i} \left( {\frac{h}{2}} \right)\left[ {R_{1} \left( {\frac{h}{2}} \right) - \frac{h}{2}} \right] + R_{i} \left( { - \frac{h}{2}} \right)\left[ {R_{1} \left( { - \frac{h}{2}} \right) + \frac{h}{2}} \right]} \right\} \hfill \\ I_{{xx}}^{{ij}} = \int_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-\nulldelimiterspace} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-\nulldelimiterspace} 2}}} {\frac{{ER_{i} R_{j} }}{{1 - \upsilon ^{2} }}} dz + \left( {\lambda ^{s} + 2\mu ^{s} } \right)\left[ {R_{i} \left( {\frac{h}{2}} \right)R_{j} \left( {\frac{h}{2}} \right) + R_{i} \left( { - \frac{h}{2}} \right)R_{j} \left( { - \frac{h}{2}} \right)} \right]\quad \hfill \\ J_{{xx}}^{{ij}} = \int_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-\nulldelimiterspace} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-\nulldelimiterspace} 2}}} {\frac{{\upsilon ER_{i} R_{j} }}{{1 - \upsilon ^{2} }}} dz + \left( {\lambda ^{s} + \tau ^{s} } \right)\left[ {R_{i} \left( {\frac{h}{2}} \right)R_{j} \left( {\frac{h}{2}} \right) + R_{i} \left( { - \frac{h}{2}} \right)R_{j} \left( { - \frac{h}{2}} \right)} \right]\quad \hfill \\ K_{{xx}}^{i} = \int_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-\nulldelimiterspace} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-\nulldelimiterspace} 2}}} {2GR_{i} \left( {R_{1} - z} \right)dz} + \left( {2\mu ^{{ss}} - \tau ^{s} } \right)\left\{ {R_{i} \left( {\frac{h}{2}} \right)\left[ {R_{1} \left( {\frac{h}{2}} \right) - \frac{h}{2}} \right] + R_{i} \left( { - \frac{h}{2}} \right)\left[ {R_{1} \left( { - \frac{h}{2}} \right) + \frac{h}{2}} \right]} \right\} \hfill \\ L_{{xx}}^{{ij}} = \int_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-\nulldelimiterspace} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-\nulldelimiterspace} 2}}} {GR_{i} R_{j} dz} + \left( {\mu ^{{ss}} - \frac{1}{2}\tau ^{s} } \right)\left[ {R_{i} \left( {\frac{h}{2}} \right)R_{j} \left( {\frac{h}{2}} \right) + R_{i} \left( { - \frac{h}{2}} \right)R_{j} \left( { - \frac{h}{2}} \right)} \right] \hfill \\ S_{{xx}}^{i} = \int_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-\nulldelimiterspace} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-\nulldelimiterspace} 2}}} {\kappa G\frac{{dR_{i} }}{{dz}}\frac{{dR_{1} }}{{dz}}dz} \hfill \\ T_{{xx}}^{{ij}} = \int_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-\nulldelimiterspace} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-\nulldelimiterspace} 2}}} {\kappa G\frac{{dR_{i} }}{{dz}}\frac{{dR_{j} }}{{dz}}dz} \hfill \\ \end{gathered} $$

where \(i,j = 1,2,3\)

Appendix 2

The coefficient of matrix K are

$$ \begin{gathered} K_{ij} = \int_{0}^{{L_{x} }} {\int_{0}^{{L_{y} }} {\left( {1 - l^{2} \nabla^{2} } \right)\left[ {I_{xx}^{ij} \frac{{d^{3} X_{m} }}{{dx^{3} }}Y_{n} + L_{xx}^{ij} \frac{{dX_{m} }}{dx}\frac{{d^{2} Y_{n} }}{{dy^{2} }} - T_{xx}^{ij} \frac{{dX_{m} }}{dx}Y_{n} } \right]\frac{{dX_{m} }}{dx}Y_{n} dxdy} } \quad \left( {i,j = 1,2,3} \right) \hfill \\ K_{{i\left( {j + 3} \right)}} = \int_{0}^{{L_{x} }} {\int_{0}^{{L_{y} }} {\left( {1 - l^{2} \nabla^{2} } \right)\left[ {\left( {J_{xx}^{ij} + L_{xx}^{ij} } \right)\frac{{dX_{m} }}{dx}\frac{{d^{2} Y_{n} }}{{dy^{2} }}} \right]\frac{{dX_{m} }}{dx}Y_{n} dxdy} } \quad \left( {i,j = 1,2,3} \right) \hfill \\ K_{{\left( {i + 3} \right)j}} = \int_{0}^{{L_{x} }} {\int_{0}^{{L_{y} }} {\left( {1 - l^{2} \nabla^{2} } \right)\left[ {\left( {J_{xx}^{ij} + L_{xx}^{ij} } \right)\frac{{d^{2} X_{m} }}{{dx^{2} }}\frac{{dY_{n} }}{dy}} \right]X_{m} \frac{{dY_{n} }}{dy}dxdy} } \quad \left( {i,j = 1,2,3} \right) \hfill \\ K_{{\left( {i + 3} \right)\left( {j + 3} \right)}} = \int_{0}^{{L_{x} }} {\int_{0}^{{L_{y} }} {\left( {1 - l^{2} \nabla^{2} } \right)\left[ {I_{xx}^{ij} X_{m} \frac{{d^{3} Y_{n} }}{{dy^{3} }} + L_{xx}^{ij} \frac{{d^{2} X_{m} }}{{dx^{2} }}\frac{{dY_{n} }}{dy} - T_{xx}^{ij} X_{m} \frac{{dY_{n} }}{dy}} \right]X_{m} \frac{{dY_{n} }}{dy}dxdy} } \quad \left( {i,j = 1,2,3} \right) \hfill \\ K_{7j} = \int_{0}^{{L_{x} }} {\int_{0}^{{L_{y} }} {\left( {1 - l^{2} \nabla^{2} } \right)\left[ {C_{xx}^{j} X_{m} \frac{{d^{4} Y_{n} }}{{dy^{4} }} + \left( {D_{xx}^{j} + 2F_{xx}^{j} } \right)\frac{{d^{2} X_{m} }}{{dx^{2} }}\frac{{d^{2} Y_{n} }}{{dy^{2} }} - T_{xx}^{1j} \frac{{d^{2} X_{m} }}{{dx^{2} }}Y_{n} } \right]X_{m} Y_{n} dxdy} } \quad \left( {j = 1,2,3} \right) \hfill \\ K_{{7\left( {j + 3} \right)}} = \int_{0}^{{L_{x} }} {\int_{0}^{{L_{y} }} {\left( {1 - l^{2} \nabla^{2} } \right)\left[ {C_{xx}^{j} \frac{{d^{4} X_{m} }}{{dx^{4} }}Y_{n} + \left( {D_{xx}^{j} + 2F_{xx}^{j} } \right)\frac{{d^{2} X_{m} }}{{dx^{2} }}\frac{{d^{2} Y_{n} }}{{dy^{2} }} - T_{xx}^{1j} X_{m} \frac{{d^{2} Y_{n} }}{{dy^{2} }}} \right]X_{m} Y_{n} dxdy} } \quad \left( {j = 1,2,3} \right) \hfill \\ K_{77} = \int_{0}^{{L_{x} }} {\int_{0}^{{L_{y} }} {\left( {1 - l^{2} \nabla^{2} } \right)\left[ \begin{gathered} A_{xx} \left( {\frac{{d^{4} X_{m} }}{{dx^{4} }}Y_{n} + \frac{{d^{4} Y_{n} }}{{dy^{4} }}X_{m} } \right) + 2\left( {B_{xx} + E_{xx} } \right)\frac{{d^{2} X_{m} }}{{dx^{2} }}\frac{{d^{2} Y_{n} }}{{dy^{2} }} \hfill \\ - \left( {2\tau^{s} + S_{xx}^{1} } \right)\left( {X_{m} \frac{{d^{2} Y_{n} }}{{dy^{2} }} + \frac{{d^{2} X_{m} }}{{dx^{2} }}Y_{n} } \right) \hfill \\ \end{gathered} \right]X_{m} Y_{n} dxdy} } \hfill \\ \end{gathered} $$

where \(K_{{\left( {i + 3} \right)\left( {j + 3} \right)}}\) is \(K_{44}\) for i = j = 1, \(K_{54}\) for i = 2 and j = 1, and so on.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, L.H., Wen, B., Xiang, Y. et al. Elastic buckling of nanoplates based on general third-order shear deformable plate theory including both size effects and surface effects. Int J Mech Mater Des 17, 521–543 (2021). https://doi.org/10.1007/s10999-021-09545-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-021-09545-x

Keywords

Navigation