Skip to main content
Log in

The effect of finite electrical conductivity of small-scale beam resonators on their vibrational response under electrostatic fields

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Electrostatic actuation is one of the most commonly used methods for excitation and measurement in micro and nanoscale resonators. In the dynamical behavior analyses of such systems, the resonating beam is often assumed to be a perfect conductor. In this paper, the effect of electrical resistivity on the vibrational response of these systems, including the natural frequency and damping, is investigated. The governing coupled nonlinear partial differential equations of motion are derived and a new finite element method formulation is presented by developing a new electromechanical element. The numerical natural frequencies are compared with experimental measurements and the achieved correlation is better than that in the prior studies. Results indicate that there is a jump in the frequency and damping of the system at a critical resistivity. As the system size decreases and the applied voltage approaches the pull-in voltage, the electrical resistivity completely dominates the response nature of the system. An experiment is also conducted, and good agreement with the theory is observed regarding the effect of electrical resistivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdel-Rahman, E.M., Younis, M.I., Nayfeh, A.H.: Characterization of the mechanical behavior of an electrically actuated microbeam. J. Micromech. Microeng. 12(6), 759 (2002)

    Google Scholar 

  • Ayan, A., Turkay, D., Unlu, B., Naghinazhadahmadi, P., Oliaei, S.N.B., Boztug, C., Yerci, S.: strain engineering of Germanium Nanobeams by electrostatic Actuation. Sci. Rep. 9(1), 4963 (2019)

    Google Scholar 

  • Batra, R., Porfiri, M., Spinello, D.: Effects of Casimir force on pull-in instability in micromembranes. EPL (Europhys. Lett.) 77(2), 20010 (2007)

    Google Scholar 

  • Batra, R., Porfiri, M., Spinello, D.: Effects of van der Waals force and thermal stresses on pull-in instability of clamped rectangular microplates. Sensors 8(2), 1048–1069 (2008a)

    Google Scholar 

  • Batra, R., Porfiri, M., Spinello, D.: Reduced-order models for microelectromechanical rectangular and circular plates incorporating the Casimir force. Int. J. Solids Struct. 45(11–12), 3558–3583 (2008b)

    MATH  Google Scholar 

  • Batra, R., Porfiri, M., Spinello, D.: Vibrations of narrow microbeams predeformed by an electric field. J. Sound Vibr. 309(3–5), 600–612 (2008c)

    Google Scholar 

  • Bøggild, P., Hansen, T.M., Tanasa, C., Grey, F.: Fabrication and actuation of customized nanotweezers with a 25 nm gap. Nanotechnology 12(3), 331 (2001)

    Google Scholar 

  • Brenes, A., Vysotskyi, B., Lefeuvre, E., Juillard, J.: Nondestructive gap dimension estimation of electrostatic MEMS resonators from electrical measurements. Mech. Syst. Signal Process. 112, 10–21 (2018)

    Google Scholar 

  • Caruntu, D.I., Martinez, I.: Reduced order model of parametric resonance of electrostatically actuated MEMS cantilever resonators. Int. J. Non-Linear Mech. 66, 28–32 (2014)

    Google Scholar 

  • Caruntu, D.I., Botello, M.A., Reyes, C.A., Beatriz, J.S.: Voltage-amplitude response of superharmonic resonance of second order of electrostatically actuated MEMS cantilever resonators. J. Comput. Nonlinear Dyn. 14(3), 031005 (2019)

    Google Scholar 

  • Cerini, F., Ferrari, M., Ferrari, V., Russo, A., Urquia, M.A., Ardito, R., De Masi, B., Sedmik, R.: Electro-mechanical modelling and experimental characterization of a high-aspect-ratio electrostatic-capacitive MEMS device. Sens. Actuators A Phys. 266, 219–231 (2017)

    Google Scholar 

  • Chen, C., Ma, M., Zhe Liu, J., Zheng, Q., Xu, Z.: Viscous damping of nanobeam resonators: humidity, thermal noise, and a paddling effect. J. Appl. Phys. 110(3), 034320 (2011)

    Google Scholar 

  • Dance, R., Butler, N., Gray, R., MacLellan, D., Rusby, D., Scott, G., Zielbauer, B., Bagnoud, V., Xu, H., Robinson, A.: Role of lattice structure and low temperature resistivity in fast-electron-beam filamentation in carbon. Plasma Phys. Control. Fusion 58(1), 014027 (2015)

    Google Scholar 

  • Ijntema, D.J., Tilmans, H.A.: Static and dynamic aspects of an air-gap capacitor. Sens. Actuators A Phys. 35(2), 121–128 (1992)

    Google Scholar 

  • Kaisti, M., Panula, T., Leppänen, J., Punkkinen, R., Tadi, M.J., Vasankari, T., Jaakkola, S., Kiviniemi, T., Airaksinen, J., Kostiainen, P.: Clinical assessment of a non-invasive wearable MEMS pressure sensor array for monitoring of arterial pulse waveform, heart rate and detection of atrial fibrillation. NPJ Digit. Med. 2(1), 39 (2019)

    Google Scholar 

  • Karimipour, I., Beni, Y.T., Akbarzadeh, A.: Size-dependent nonlinear forced vibration and dynamic stability of electrically actuated micro-plates. Commun. Nonlinear Sci. Numer. Simul. 78, 104856 (2019)

    MathSciNet  Google Scholar 

  • Kim, P., Lieber, C.M.: Nanotube nanotweezers. Science 286(5447), 2148–2150 (1999)

    Google Scholar 

  • Kohlmann, M.: A new model for electrostatic MEMS with two free boundaries. J. Math. Anal. Appl. 408(2), 513–524 (2013)

    MathSciNet  MATH  Google Scholar 

  • König, E.-R., Wachutka, G.: Multi-parameter homotopy for the numerical analysis of MEMS. Sens. Actuators A Phys. 110(1–3), 39–51 (2004)

    Google Scholar 

  • Kuang, J.-H., Chen, C.-J.: Dynamic characteristics of shaped micro-actuators solved using the differential quadrature method. J. Micromech. Microeng. 14(4), 647 (2004)

    Google Scholar 

  • Legtenberg, R., Tilmans, H.A.: Electrostatically driven vacuum-encapsulated polysilicon resonators part I. Design and fabrication. Sens. Actuators A Phys. 45(1), 57–66 (1994)

    Google Scholar 

  • Lin, W.-H., Zhao, Y.-P.: Nonlinear behavior for nanoscale electrostatic actuators with Casimir force. Chaos, Solitons Fractals 23(5), 1777–1785 (2005)

    MATH  Google Scholar 

  • McKenna, P., MacLellan, D., Butler, N., Dance, R., Gray, R., Robinson, A., Neely, D., Desjarlais, M.: Influence of low-temperature resistivity on fast electron transport in solids: scaling to fast ignition electron beam parameters. Plasma Phys. Control. Fusion 57(6), 064001 (2015)

    Google Scholar 

  • Miandoab, E.M., Yousefi-Koma, A., Pishkenari, H.N., Tajaddodianfar, F.: Study of nonlinear dynamics and chaos in MEMS/NEMS resonators. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 611–622 (2015)

    Google Scholar 

  • Moheimani, R., Ahmadian, M.: On free vibration of functionally graded Euler–Bernoulli beam models based on the non-local theory. In: ASME 2012 International Mechanical Engineering Congress and Exposition 2012, pp. 169–173

  • Nayfeh, A.H., Younis, M.I.: A new approach to the modeling and simulation of flexible microstructures under the effect of squeeze-film damping. J. Micromech. Microeng. 14(2), 170 (2003)

    Google Scholar 

  • Palmer, H.B.: The capacitance of a parallel-plate capacitor by the Schwartz-Christoffel transformation. Electr. Eng. 56(3), 363–368 (1937)

    Google Scholar 

  • Pasharavesh, A., Ahmadian, M.T.: Analytical and numerical simulations of energy harvesting using MEMS devices operating in nonlinear regime. Eur. Phys. J. B 91(10), 241 (2018)

    MathSciNet  Google Scholar 

  • Pasharavesh, A., Ahmadian, M.: Toward wideband piezoelectric harvesters through self-powered transitions to high-energy response. ASME J. Vib. Acoust. (2019). https://doi.org/10.1115/1.4045379

    Article  Google Scholar 

  • Pasharavesh, A., Ahmadian, M., Zohoor, H.: On the energy extraction from large amplitude vibrations of MEMS-based piezoelectric harvesters. Acta Mech. 228(10), 3445–3468 (2017)

    MathSciNet  MATH  Google Scholar 

  • Pasharavesh, A., Ahmadian, M., Zohoor, H.: Complex modal analysis and coupled electromechanical simulation of energy harvesting piezoelectric laminated beams. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 233(7), 2526–2537 (2019)

    Google Scholar 

  • Qin, Z., Pang, X., Safaei, B., Chu, F.: Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions. Compos. Struct. 220, 847–860 (2019)

    Google Scholar 

  • Rahmanian, S., Hosseini-Hashemi, S.: Size-dependent resonant response of a double-layered viscoelastic nanoresonator under electrostatic and piezoelectric actuations incorporating surface effects and Casimir regime. Int. J. Non-Linear Mech. 109, 118–131 (2019)

    Google Scholar 

  • Ramezani, A., Alasty, A., Akbari, J.: Pull-in parameters of cantilever type nanomechanical switches in presence of Casimir force. Nonlinear Anal. Hybrid Syst. 1(3), 364–382 (2007)

    MATH  Google Scholar 

  • Ruther, P., Herwik, S., Kisban, S., Seidl, K., Paul, O.: Recent progress in neural probes using silicon MEMS technology. IEEJ Trans. Electr. Electron. Eng. 5(5), 505–515 (2010)

    Google Scholar 

  • Safaei, B., Moradi-Dastjerdi, R., Qin, Z., Chu, F.: Frequency-dependent forced vibration analysis of nanocomposite sandwich plate under thermo-mechanical loads. Compos. Part B Eng. 161, 44–54 (2019)

    Google Scholar 

  • Seymour, J.P., Wu, F., Wise, K.D., Yoon, E.: State-of-the-art MEMS and microsystem tools for brain research. Microsyst. Nanoeng. 3, 16066 (2017)

    Google Scholar 

  • Siahpour, S., Zand, M.M., Mousavi, M.: Dynamics and vibrations of particle-sensing MEMS considering thermal and electrostatic actuation. Microsyst. Technol. 24(3), 1545–1552 (2018)

    Google Scholar 

  • Singh, T., Elhady, A., Jia, H., Mojdeh, A., Kaplan, C., Sharma, V., Basha, M., Abdel-Rahman, E.: Modeling of low-damping laterally actuated electrostatic MEMS. Mechatronics 52, 1–6 (2018)

    Google Scholar 

  • Tilmans, H.A., Legtenberg, R.: Electrostatically driven vacuum-encapsulated polysilicon resonators: part II. Theory and performance. Sens. Actuators A Phys. 45(1), 67–84 (1994)

    Google Scholar 

  • Younis, M.I.: Modeling and simulation of microelectromechanical systems in multi-physics fields. Virginia Tech (2004)

  • Zand, M.M., Ahmadian, M.: Vibrational analysis of electrostatically actuated microstructures considering nonlinear effects. Commun. Nonlinear Sci. Numer. Simul. 14(4), 1664–1678 (2009)

    Google Scholar 

  • Zand, M.M., Ahmadian, M., Rashidian, B.: Semi-analytic solutions to nonlinear vibrations of microbeams under suddenly applied voltages. J. Sound Vibr. 325(1–2), 382–396 (2009)

    Google Scholar 

  • Zhang, W.-M., Yan, H., Peng, Z.-K., Meng, G.: Electrostatic pull-in instability in MEMS/NEMS: a review. Sens. Actuators A Phys. 214, 187–218 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Reza Moheimani or Hamid Dalir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moheimani, R., Pasharavesh, A. & Dalir, H. The effect of finite electrical conductivity of small-scale beam resonators on their vibrational response under electrostatic fields. Int J Mech Mater Des 16, 461–474 (2020). https://doi.org/10.1007/s10999-020-09488-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-020-09488-9

Keywords

Navigation