Skip to main content

Advertisement

Log in

Nonlinear analysis of flexoelectric energy harvesters under force excitations

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

This work focuses on theoretical modeling and dynamic analysis of a flexoelectric beam energy harvester with the consideration of geometric nonlinearity. We assume that the beam energy harvester has a thickness at nanoscale and a width and length at microscale. Under a harmonic concentrated force, the proposed energy harvester generates electric power due to the phenomenon of flexoelectricity. Based on the theory of flexoelectricity and Euler–Bernoulli beam assumption, the nonlinear electromechanical coupling equations are derived. Galerkin method is employed to obtain the discrete nonlinear equations, which are then solved numerically. Frequency response curves are plotted to reveal the nonlinear characteristics of the energy harvester and it is found that the frequency response curves of the flexoelectric energy harvester exhibit hardening behaviors. Case studies are provided and we emphasize on the influences of load resistance, tip mass, concentrated force and damping ratio on the output performance of the energy harvester. In addition, it is suggested that the flexoelectric energy harvester has a better output performance under a square waveform force among different forms of the concentrated force. The results obtained are significant for designing optimal flexoelectric energy harvesters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters. Nonlinear Dyn. 67, 1147–1160 (2012)

    Article  MathSciNet  Google Scholar 

  • Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16, R1–R21 (2007)

    Article  Google Scholar 

  • Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102, 080601 (2009)

    Article  Google Scholar 

  • Dai, H.L., Ceballes, S., Abdelkefi, A., Hong, Y.Z., Wang, L.: Exact modes for post-buckling characteristics of nonlocal nanobeams in a longitudinal magnetic field. Appl. Math. Model. 55, 758–775 (2018)

    Article  MathSciNet  Google Scholar 

  • Daqaq, M.F.: Response of uni-modal duffing-type harvesters to random forced excitations. J. Sound Vib. 329, 3621–3631 (2010)

    Article  Google Scholar 

  • Deng, Q., Kammoun, M., Erturk, A., Sharma, P.: Nanoscale flexoelectric energyharvesting. Int. J. Solids Struct. 51, 3218–3225 (2014)

    Article  Google Scholar 

  • Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, London (2011a)

    Book  Google Scholar 

  • Erturk, A., Inman, D.J.: Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J. Sound Vib. 330(10), 2339–2353 (2011b)

    Article  Google Scholar 

  • Fan, T., Yang, L.: Surface effect on nano piezoelectricenergy harvester based on flexural mode. Polym. Compos. 39(3), 936–941 (2016)

    Article  MathSciNet  Google Scholar 

  • Gammaitoni, L., Neri, I., Vocca, H.: Nonlinear oscillators for vibration energy harvesting. Appl. Phys. Lett. 94, 164102 (2009)

    Article  Google Scholar 

  • Glynne-Jones, P., Tudor, M.J., Beeby, S.P., White, N.M.: An electromagnetic, vibration-powered generator for intelligent sensor systems. Sens. Actuators A 110, 344–349 (2004)

    Article  Google Scholar 

  • Kumar, A., Sharma, A., Vaish, R., Kumar, R., Jain, S.C.A.: Numerical study on flexoelectric bistable energy harvester. Appl. Phys. A 124, 483 (2018)

    Article  Google Scholar 

  • Kundalwal, S.I., Meguid, S.A., Weng, G.J.: Strain gradient polarization in graphene. Carbon 117, 462–472 (2017)

    Article  Google Scholar 

  • Kundalwal, S.I., Shingare, K.B., Rathi, A.: Effect of flexoelectricity on the electromechanical response of graphene nanocomposite beam. Int. J. Mech. Mater. Des. (2018). https://doi.org/10.1007/s10999-018-9417-6

    Article  Google Scholar 

  • Liang, X., Hu, S.L., Shen, S.P.: Effects of surface and flexoelectricity on a piezoelectric nanobeam. Smart Mater. Struct. 23, 035020 (2014)

    Article  Google Scholar 

  • Liang, X., Hu, S.L., Shen, S.P.: Nanoscale mechanical energy harvesting using piezoelectricity and flexoelectricity. Smart Mater. Struct. 26, 035050 (2017)

    Article  Google Scholar 

  • Lumentut, M.F., Howard, I.M.: Parametric design-based modal damped vibrational piezoelectric energy harvesters with arbitrary proof mass offset: numerical and analytical validations. Mech. Syst. Signal Process. 68–69, 562–586 (2016)

    Article  Google Scholar 

  • Maranganti, R., Sharma, N.D., Sharma, P.: Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green’s function solutions and embedded inclusions. Phys. Rev. B 74, 014110 (2006)

    Article  Google Scholar 

  • Mitcheson, P.D., Miao, P., Stark, B.H., Yeatman, E.M., Holmes, A.S., Green, T.C.: MEMS electrostatic micropower generator for low frequency operation. Sens. Actuators A 115, 523–529 (2004)

    Article  Google Scholar 

  • Moura, A.G., Erturk, A.: Electroelastodynamics of flexoelectric energy conversion and harvesting in elasticdielectrics. J. Appl. Phys. 121, 064110 (2017)

    Article  Google Scholar 

  • Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley, New York (2004)

    Book  Google Scholar 

  • Nguyen, T.D., Mao, S., Yeh, Y.W., Purohit, P.K., McAlpine, M.C.: Nanoscale flexoelectricity. Adv. Mater. 24, 946–974 (2013)

    Article  Google Scholar 

  • Pasharavesh, A., Ahmadian, M.T.: Characterization of a nonlinear MEMS-based piezoelectric resonator for wideband micro power generation. Appl. Math. Model. 41, 121–142 (2017)

    Article  MathSciNet  Google Scholar 

  • Pasharavesh, A., Ahmadian, M.T., Zohoor, H.: Electromechanical modeling and analytical investigation of nonlinearities in energy harvesting piezoelectric beams. Int. J. Mech. Mater. Des. 13, 499–514 (2017)

    Article  Google Scholar 

  • Qi, Y., Jafferis, N.T., Lyons, K., Lee, C.M., Ahmad, H., McAlpine, M.C.: Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett. 10, 524–528 (2010)

    Article  Google Scholar 

  • Rafiee, M., He, X.Q., Liew, K.M.: Nonlinear analysis of piezoelectric nanocomposite energy harvesting plate. Smart Mater. Struct. 23, 065001 (2014)

    Article  Google Scholar 

  • Ray, M.C.: Enhanced magnetoelectric effect in multiferroic composite beams due to flexoelectricity and transverse deformations. Int. J. Mech. Mater. Des. 14, 461–472 (2018)

    Article  Google Scholar 

  • Rupa, N.S., Ray, M.C.: Analysis of flexoelectric response in nanobeams using nonlocal theory of elasticity. Int. J. Mech. Mater. Des. 13, 453–467 (2017)

    Article  Google Scholar 

  • Semler, C., Li, G.X., Païdoussis, M.P.: The non-linear equations of motion of pipes conveying fluid. J. Sound Vib. 169, 577–599 (1994)

    Article  Google Scholar 

  • Shen, S.P., Hu, S.L.: A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids 58, 665–677 (2010)

    Article  MathSciNet  Google Scholar 

  • Sidhardh, S., Ray, M.C.: Exact solutions for flexoelectric response in elastic dielectric nanobeams considering generalized constitutive gradient theories. Int. J. Mech. Mater. Des. (2018). https://doi.org/10.1007/s10999-018-9409-6

    Article  Google Scholar 

  • Todaro, M.T., Guido, F., Mastronardi, V., Desmaele, D., Epifani, G., Algieri, L., De Vittorio, M.: Piezoelectric MEMS vibrational energy harvesters: advances and outlook. Microelectron. Eng. 183–184, 23–36 (2017)

    Article  Google Scholar 

  • Wang, X.: Piezoelectric nanogenerators-harvesting ambient mechanical energy at the nanometer scale. Nano Energy 1(1), 13–24 (2012)

    Article  Google Scholar 

  • Wang, K.F., Wang, B.L.: Surface effects on the energy generating performance of piezoelectric circular nanomembrane energy harvesters under pressure loading. Europhys. Lett. 108, 17001 (2014)

    Article  Google Scholar 

  • Wang, K.F., Wang, B.L.: An analytical model fornanoscale unimorph piezoelectric energy harvesters with flexoelectric effect. Compos. Struct. 153, 253–261 (2016)

    Article  Google Scholar 

  • Wang, K.F., Wang, B.L.: Non-linear flexoelectricity in energy harvesting. Int. J. Eng. Sci. 16, 88–103 (2017)

    Article  Google Scholar 

  • Wang, Z., Zhang, X.X., Wang, X., Yue, W., Li, J., Miao, J., Zhu, W.: Giant flexoelectric polarization in a micromachined ferroelectric diaphragm. Adv. Funct. Mater. 23, 124–132 (2013)

    Article  Google Scholar 

  • Wang, W.J., Li, P., Jin, F.: An analytical model of a broadband magnetic energy nanoharvester array with consideration of flexoelectricity and surface effect. J. Phys. D Appl. Phys. 51, 155304 (2018)

    Article  Google Scholar 

  • Yan, Z.: Modeling of a nanoscale flexoelectric energy harvester with surface effects. Physica E 88, 125–132 (2017)

    Article  Google Scholar 

  • Yan, Z., Jiang, L.Y.: Surface effects on the electromechanical coupling and bending behaviours of piezoelectric nanowires. J. Phys. D Appl. Phys. 44, 075404 (2011)

    Article  Google Scholar 

  • Yan, Z., Jiang, L.Y.: Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams. J. Appl. Phys. 113, 194102 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 11502084), Natural Science Foundation of Hubei Province (2017CFB429) and the Fundamental Research Funds for the Central Universities, HUST (Nos. 2016YXMS096, 2017KFYXJJ135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, H.L., Yan, Z. & Wang, L. Nonlinear analysis of flexoelectric energy harvesters under force excitations. Int J Mech Mater Des 16, 19–33 (2020). https://doi.org/10.1007/s10999-019-09446-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-019-09446-0

Keywords

Navigation