Skip to main content

Advertisement

Log in

A numerical study on flexoelectric bistable energy harvester

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A flexoelectric energy harvesting can be a viable solution of energy source for low power devices and sensors due to its higher performance at nano/micro domain size. Numerical study has been performed on energy harvester based on flexoelectric phenomenon of dielectric materials. Cantilever type structure was opted here as it induces the polarization due to the breaking of lattice symmetry upon bending. Host layer of cantilever is made of barium strontium titanate (BST) as it has high flexoelectric coefficient, and electrodes are attached with the host layer to collect the charges. In this study, nonlinearity has been introduced using pair of magnets at the free end of the cantilever. Characteristics of the harvester performance (linear–non-linear) changes by varying the distance between magnets. Results revealed that the bistable energy harvester gives more operating frequency range when excitation is random as compared to the linear energy harvester. For the given dimension of the harvester, when magnets distance d = 6 mm, effective harvesting frequency ranges are 5–17.3 and 17.6–26 Hz as compared to linear harvester. Further, role of load resistance was investigated to understand the impact on the performance. Hysteresis loop between voltage and displacement significantly varies with the resistance. This hysteresis loop confirmed the backward coupling of flexoelectric layer, in which voltage affects the displacement due to actuation. Area under the hysteresis loop is maximum for optimum resistance value (20.4 kΩ) which confirms the maximum extraction of power during vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N.G. Stephen, J. Sound Vib. 293, 409 (2006)

    Article  ADS  Google Scholar 

  2. A. Erturk, D.J. Inman, Smart Mater. Struct. 18, 025009 (2009)

    Article  ADS  Google Scholar 

  3. Y.C. Shu, I.C. Lien, Smart Mater. Struct. 15, 1499 (2006)

    Article  ADS  Google Scholar 

  4. H.A. Sodano, D.J. Inman, G. Park, J. Intell. Mater. Syst. Struct. 16, 799 (2005)

    Article  Google Scholar 

  5. G.K. Ottman, H.F. Hofmann, A.C. Bhatt, G.A. Lesieutre, IEEE Trans. Power Electron. 17, 669 (2002)

    Article  ADS  Google Scholar 

  6. K.A. Cook-Chennault, N. Thambi, A.M. Sastry, Smart Mater. Struct. 17, 043001 (2008)

    Article  ADS  Google Scholar 

  7. S. Priya, D.J. Inman, Energy Harvesting Technologies (Springer, Boston, 2009)

    Book  Google Scholar 

  8. S.P. Beeby, R.N. Torah, M.J. Tudor, P. Glynne-Jones, T. O’Donnell, C.R. Saha, S. Roy, J. Micromech Microeng 17, 1257 (2007)

    Article  ADS  Google Scholar 

  9. P.D. Mitcheson, E.M. Yeatman, G.K. Rao, A.S. Holmes, T.C. Green, Proc. IEEE 96, 1457 (2008)

    Article  Google Scholar 

  10. S. Roundy, J. Intell. Mater. Syst. Struct. 16, 809 (2005)

    Article  Google Scholar 

  11. S. Kim, W.W. Clark, Q.M. Wang, J. Intell. Mater. Syst. Struct. 16, 847 (2005)

    Article  Google Scholar 

  12. F. Goldschmidtboeing, P. Woias, J. Micromech. Microeng. 18, 104013 (2008)

    Article  ADS  Google Scholar 

  13. M.J. Guan, W.H. Liao, Smart Mater. Struct. 16, 498 (2007)

    Article  ADS  Google Scholar 

  14. F. Cottone, H. Vocca, L. Gammaitoni, Phys. Rev. Lett. 102, 080601 (2009)

    Article  ADS  Google Scholar 

  15. A.F. Arrieta, P. Hagedorn, A. Erturk, D.J. Inman, Appl. Phys. Lett. 97, 104102 (2010)

    Article  ADS  Google Scholar 

  16. Q. Deng, M. Kammoun, A. Erturk, P. Sharma, Int. J. Solids Struct. 51, 3218 (2014)

    Article  Google Scholar 

  17. W. Zeng, X.-M. Tao, S. Chen, S. Shang, H.L.W. Chan, S.H. Choy, Energy Environ. Sci. 6, 2631 (2013)

    Article  Google Scholar 

  18. K.F. Wang, B.L. Wang, Int. J. Eng. Sci. 116, 88 (2017)

    Article  Google Scholar 

  19. H.S. Tzou, X.F. Zhang, J. Vib. Acoust. 138, 031006 (2016)

    Article  Google Scholar 

  20. J.F. Scott, J. Phys. Condens. Matter 25, 331001 (2013)

    Article  Google Scholar 

  21. W. Huang, F.G. Yuan, X. Jiang, in Structural Health Monitoring (SHM) in Aerospace Structures, ed. By F.-G. Yuan (Elsevier, 2016), p. 149

  22. S. Chandratre, P. Sharma, Appl. Phys. Lett. 100, 023114 (2012)

    Article  ADS  Google Scholar 

  23. M. Zelisko, Y. Hanlumyuang, S. Yang, Y. Liu, C. Lei, J. Li, P.M. Ajayan, P. Sharma, Nat. Commun. 5, 4284 (2014)

    Article  ADS  Google Scholar 

  24. M.S. Majdoub, P. Sharma, T. Cagin, Phys. Rev. B Condens. Matter Mater. Phys. 77, 125424 (2008)

    Article  ADS  Google Scholar 

  25. P.S.M.S. Majdoub, T. Cagin, M. Majdoub, P. Sharma, T. Cagin, Phys. Rev. B 77, 1 (2008)

    Article  Google Scholar 

  26. K.F. Wang, B.L. Wang, Compos. Struct. 153, 253 (2016)

    Article  Google Scholar 

  27. A.G. Moura, A. Erturk, J. Appl. Phys. 121, 064110 (2017)

    Article  ADS  Google Scholar 

  28. A. Kumar, A. Chauhan, R. Vaish, R. Kumar, S.C. Jain, J. Electron. Mater. 47, 394 (2018)

    Article  ADS  Google Scholar 

  29. R. Maranganti, N.D. Sharma, P. Sharma, Phys. Rev. B Condens. Matter Mater. Phys. 74, 014110 (2006)

    Article  ADS  Google Scholar 

  30. A. Abdelkefi, Int. J. Eng. Sci. 100, 112 (2016)

    Article  MathSciNet  Google Scholar 

  31. X. Zhou, S. Gao, H. Liu, Y. Guan, Smart Mater. Struct. 26, 015008 (2017)

    Article  ADS  Google Scholar 

  32. A. Pasharavesh, M.T. Ahmadian, Appl. Math. Model. 41, 121 (2017)

    Article  MathSciNet  Google Scholar 

  33. Q. Deng, L. Liu, P. Sharma, J. Mech. Phys. Solids 62, 209 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  34. K. Chu, C.H. Yang, Phys. Rev. B 96, 104102 (2017)

    Article  ADS  Google Scholar 

  35. A.G. Petrov, F. Sachs, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 65, 021905 (2002)

    Google Scholar 

  36. E.N. Bunting, G.R. Shelton, A.S. Creamer, J. Am. Ceram. Soc. 30, 114 (1947)

    Article  Google Scholar 

  37. J. Li, D. Jin, L. Zhou, J. Cheng, Mater. Lett. 76, 100 (2012)

    Article  Google Scholar 

  38. P. Padmini, T.R. Taylor, M.J. Lefevre, A.S. Nagra, R.A. York, J.S. Speck, Appl. Phys. Lett. 75, 3186 (1999)

    Article  ADS  Google Scholar 

  39. H. Khassaf, N. Khakpash, F. Sun, N.M. Sbrockey, G.S. Tompa, T.S. Kalkur, S.P. Alpay, Appl. Phys. Lett. 104, 202902 (2014)

    Article  ADS  Google Scholar 

  40. A. Tombak, J.-P. Maria, F. Ayguavives, G.T. Stauf, A.I. Kingon, A. Mortazawi, IEEE Microw. Wirel. Compon. Lett. 12, 3 (2002)

    Article  Google Scholar 

  41. A. Tombak, J.P. Maria, F.T. Ayguavives, Z. Jin, G.T. Stauf, A.I. Kingon, A. Mortazawi, IEEE Trans. Microw. Theory Tech. 51, 462 (2003)

    Article  ADS  Google Scholar 

  42. L.M. Garten, S. Trolier-Mckinstry, J. Appl. Phys. 117, 094102 (2015)

    Article  ADS  Google Scholar 

  43. W. Ma, L.E. Cross, Appl. Phys. Lett. 81, 3440 (2002)

    Article  ADS  Google Scholar 

  44. S.R. Kwon, W.B. Huang, S.J. Zhang, F.G. Yuan, X.N. Jiang, Smart Mater. Struct. 22, 115017 (2013)

    Article  ADS  Google Scholar 

  45. S. Patel, A. Chauhan, J. Cuozzo, S. Lisenkov, I. Ponomareva, R. Vaish, Appl. Phys. Lett. 108, 162901 (2016)

    Article  ADS  Google Scholar 

  46. X. Jiang, W. Huang, S. Zhang, Nano Energy 2, 1079 (2013)

    Article  Google Scholar 

  47. D. Lee, A. Yoon, S.Y. Jang, J.G. Yoon, J.S. Chung, M. Kim, J.F. Scott, T.W. Noh, Phys. Rev. Lett. 107, 057602 (2011)

    Article  ADS  Google Scholar 

  48. Z. Wang, X.X. Zhang, X. Wang, W. Yue, J. Li, J. Miao, W. Zhu, Adv. Funct. Mater. 23, 124 (2013)

    Article  Google Scholar 

  49. S. Baskaran, N. Ramachandran, X. He, S. Thiruvannamalai, H.J. Lee, H. Heo, Q. Chen, J.Y. Fu, Phys. Lett. Sect. A Gen. At. Solid State Phys. 375, 2082 (2011)

    Google Scholar 

  50. J. Narvaez, S. Saremi, J. Hong, M. Stengel, G. Catalan, Phys. Rev. Lett. 115, 037601 (2015)

    Article  ADS  Google Scholar 

  51. W. Ma, L.E. Cross, Appl. Phys. Lett. 79, 4420 (2001)

    Article  ADS  Google Scholar 

  52. X. Liang, R. Zhang, S. Hu, S. Shen, J. Intell. Mater. Syst. Struct. 28, 2064 (2017)

    Article  Google Scholar 

  53. S.-B. Choi, G.-W. Kim, J. Phys. D Appl. Phys. 50, 075502 (2017)

    Article  ADS  Google Scholar 

  54. W. Ma, L.E. Cross, Appl. Phys. Lett. 78, 2920 (2001)

    Article  ADS  Google Scholar 

  55. W. Ma, L.E. Cross, Appl. Phys. Lett. 88, 232902 (2006)

    Article  ADS  Google Scholar 

  56. W. Ma, L.E. Cross, Appl. Phys. Lett. 86, 1 (2005)

    Google Scholar 

  57. W. Huang, S.R. Kwon, S. Zhang, F.G. Yuan, X. Jiang, J. Intell. Mater. Syst. Struct. 25, 271 (2014)

    Article  Google Scholar 

  58. A. Kumar, A. Sharma, R. Kumar, R. Vaish, V.S. Chauhan, J. Asian Ceram. Soc. 2, 138 (2014)

    Google Scholar 

  59. W. Al-Ashtari, M. Hunstig, T. Hemsel, W. Sextro, Smart Mater. Struct. 21, 035019 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Rahul Vaish thanks Indian National Science Academy, New Delhi for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Vaish.

Appendix

Appendix

Displacement field and potential in terms of nodal values are given as

$$q=\left\{ {\begin{array}{*{20}{c}} {{u_i}}&{{v_i}}&{{w_i}}&{{\theta _{x,i}}}&{{\theta _{y,i}}} \end{array}} \right\}\,\,\,\,\,\,\,i=1,2,3 \ldots {\text{number}}\,\,{\text{of}}\,{\text{nodes,}}$$
$$\phi =\left\{ {{\phi _j}} \right\}\,\,\,\,\,\,\,\,j=1,2, \ldots {\text{number}}\,{\text{of}}\,{\text{elements.}}$$

Based on displacement and voltage nodal value, strain and electrical field can be written as:

$$\begin{gathered} \left\{ \varepsilon \right\}=\left[ {{B_{\text{q}}}} \right]\left\{ q \right\} \hfill \\ \left\{ E \right\}=\left[ {{H_\phi }} \right]\left\{ \phi \right\}. \hfill \\ \end{gathered}$$

\({B_{\text{q}}}\) is gradient matrix, \({H_\phi }\) is hessian matrix of displacements field and voltage respectively.

Matrices used in Eqs. 2 and 3 can be written as:

Strain energy in element:

$${\text{S.E}}=\frac{1}{2}\int\limits_{{{\text{Volume}}}} {{\varepsilon ^T}\sigma {\text{d}}V}$$
$${\text{S.E}}=\frac{1}{2}\int\limits_{V} {\left( {{{\left\{ q \right\}}^T}{{\left[ {{B_{\text{q}}}} \right]}^T}\left[ C \right]\left[ {{B_{\text{q}}}} \right]\left\{ q \right\}} \right){\text{d}}V} +\frac{1}{2}\int\limits_{V} {\left( {{{\left\{ q \right\}}^T}\left( {{{\left[ {{B_{\text{q}}}} \right]}^T}{{\left[ \mu \right]}^T}\left[ {{H_\phi }} \right]} \right)\left\{ \phi \right\}} \right){\text{d}}V}$$
$${\text{S.E}}=\frac{1}{2}\left[ {{{\left\{ q \right\}}^T}\left( {\left[ {{K_{uu}}} \right]} \right)\left\{ q \right\}+{{\left\{ q \right\}}^T}\left[ {{K_{u\phi }}} \right]\left\{ \phi \right\}} \right]\,,$$

where

$${K_{uu}}=\int\limits_{V} {{{\left[ {{B_{\text{q}}}} \right]}^T}\left[ C \right]\left[ {{B_{\text{q}}}} \right]{\text{d}}V}$$
$${K_{u\phi }}=\int\limits_{V} {{{\left[ {{B_{\text{q}}}} \right]}^T}{{\left[ \mu \right]}^T}\left[ {{H_\phi }} \right]{\text{d}}V} .$$

Electrical energy in element:

$${\text{E.E}}=\frac{1}{2}\int\limits_{V} {{E^T}D{\text{d}}V}$$
$${\text{E.E}}= - \frac{1}{2}\int\limits_{V} {\left( { - \phi {{\left\{ {{H_\phi }} \right\}}^T}\left[ \mu \right]\left[ {{B_{\text{q}}}} \right]\left\{ q \right\}+\phi {{\left\{ {{H_\phi }} \right\}}^T}\left[ \beta \right]\left[ {{H_\phi }} \right]\phi } \right){\text{d}}V} .$$
$${\text{E.E}}= - \frac{1}{2}{\left\{ \phi \right\}^T}\left[ {{K_{\phi u}}} \right]\left\{ q \right\}+\frac{1}{2}{\left\{ \phi \right\}^T}\left[ {{K_{\phi \phi }}} \right]\left\{ \phi \right\},\,$$

where

$$\left[ {{K_{\phi u}}} \right]=\int\limits_{V} {{{\left\{ {{H_\phi }} \right\}}^T}\left[ \mu \right]\left[ {{B_{\text{q}}}} \right]{\text{d}}V}$$
$$\left[ {{K_{\phi \phi }}} \right]=\int\limits_{V} {{{\left\{ {{H_\phi }} \right\}}^T}\left[ \beta \right]\left[ {{H_\phi }} \right]{\text{d}}V} ,$$

where C is material properties matrix, µ is flexoelectric coefficients matrix and β is dielectric constant matrix.

Kinetic energy in element:

$${\text{K.E}}=\frac{1}{2}\int\limits_{V} {\rho {{\left\{ {\dot {q}} \right\}}^{\rm T}}\left\{ {\dot {q}} \right\}{\text{d}}V}$$
$${\text{K.E}}=\frac{1}{2}{\left\{ {\dot {q}} \right\}^T}\left[ M \right]\left\{ {\dot {q}} \right\}$$

where

$$\left[ M \right]=\int\limits_{V} {\rho (z){{\left[ N \right]}^T}\left[ N \right]} {\text{d}}V$$

N are the shape functions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Sharma, A., Vaish, R. et al. A numerical study on flexoelectric bistable energy harvester. Appl. Phys. A 124, 483 (2018). https://doi.org/10.1007/s00339-018-1889-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1889-6

Navigation