Skip to main content
Log in

Nonlinear resonant response of imperfect extensible Timoshenko microbeams

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

This paper investigates the nonlinear size-dependent dynamics of an imperfect Timoshenko microbeam, taking into account extensibility. Based on the modified couple stress theory, the nonlinear equations of motion for the longitudinal, transverse, and rotational motions are derived via Hamilton’s energy method. A high-dimensional finite degree-of-freedom system of ordinary differential equations is obtained by the application of the Galerkin scheme. This set of equations is solved through use of the pseudo-arclength continuation method. A stability analysis is conducted via use of the Floquet theory. The resonant motion characteristics of the microbeam are examined by plotting the frequency-response and force-response curves. The effect of system parameters on the resonant response of the system is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akgöz, B., Civalek, Ö.: Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. Int. J. Eng. Sci. 49(11), 1268–1280 (2011)

    Article  MathSciNet  Google Scholar 

  • Akgöz, B., Civalek, Ö.: Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory. Compos. Struct. 98, 314–322 (2013)

    Article  Google Scholar 

  • Ansari, R., Faghih Shojaei, M., Gholami, R., Mohammadi, V., Darabi, M.A.: Thermal postbuckling behavior of size-dependent functionally graded Timoshenko microbeams. Int. J. Non Linear Mech. 50, 127–135 (2013)

    Article  Google Scholar 

  • Ansari, R., Gholami, R., Sahmani, S.: Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory. Compos. Struct. 94(1), 221–228 (2011)

    Article  MATH  Google Scholar 

  • Argyris, J., Faust, G., Haase, M., Friedrich, R.: An Exploration of Dynamical Systems and Chaos: Completely Revised and Enlarged, 2nd edn. Springer, Berlin (2015)

    MATH  Google Scholar 

  • Asghari, M., Ahmadian, M.T., Kahrobaiyan, M.H., Rahaeifard, M.: On the size-dependent behavior of functionally graded micro-beams. Mater. Des. 31(5), 2324–2329 (2010a)

    Article  Google Scholar 

  • Asghari, M., Kahrobaiyan, M.H., Ahmadian, M.T.: A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int. J. Eng. Sci. 48(12), 1749–1761 (2010b)

    Article  MathSciNet  MATH  Google Scholar 

  • Azizi, S., Ghazavi, M.R., Esmaeilzadeh Khadem, S., Rezazadeh, G., Cetinkaya, C.: Application of piezoelectric actuation to regularize the chaotic response of an electrostatically actuated micro-beam. Nonlinear Dyn. 1–15 (2013)

  • Farokhi, H., Ghayesh, M., Amabili, M.: Nonlinear resonant behavior of microbeams over the buckled state. Appl. Phys. A. 113(2), 297–307 (2013a)

  • Farokhi, H., Ghayesh, M.H., Amabili, M.: Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory. Int. J. Eng. Sci. 68, 11–23 (2013b)

    Article  MathSciNet  Google Scholar 

  • Farokhi, H., Ghayesh, M.: Size-dependent behaviour of electrically actuated microcantilever-based MEMS. Int. J. Mech. Mater. Des. (2015a). doi:10.1007/s10999-015-9295-0

  • Farokhi, H., Ghayesh, M.H.: Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory. Int. J. Mech. Sci. 90, 133–144 (2015b)

    Article  Google Scholar 

  • Ghayesh, M.H.: Parametric vibrations and stability of an axially accelerating string guided by a non-linear elastic foundation. Int. J. Non Linear Mech. 45(4), 382–394 (2010)

    Article  Google Scholar 

  • Ghayesh, M.H.: On the natural frequencies, complex mode functions, and critical speeds of axially traveling laminated beams: parametric study. Acta Mech. Solida Sin. 24(4), 373–382 (2011)

    Article  Google Scholar 

  • Ghayesh, M.H., Amabili, M., Farokhi, H.: Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory. Int. J. Eng. Sci. 63, 52–60 (2013a)

    Article  MathSciNet  Google Scholar 

  • Ghayesh, M.H., Amabili, M., Farokhi, H.: Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams. Int. J. Eng. Sci. 71, 1–14 (2013b)

    Article  MathSciNet  MATH  Google Scholar 

  • Ghayesh, M.H., Farokhi, H., Amabili, M.: Nonlinear behaviour of electrically actuated MEMS resonators. Int. J. Eng. Sci. 71, 137–155 (2013c)

    Article  MATH  Google Scholar 

  • Ghayesh, M.H., Farokhi, H., Amabili, M.: Nonlinear dynamics of a micro scale beam based on the modified couple stress theory. Compos. Part B: Eng. 50, 318–324 (2013d)

  • Ghayesh, M.H., Farokhi, H.: Nonlinear dynamics of microplates. Int. J. Eng. Sci. 86, 60–73 (2015)

  • Gholipour, A., Farokhi, H., Ghayesh, M.: In-plane and out-of-plane nonlinear size-dependent dynamics of microplates. Nonlinear Dyn. 79(3), 1771–1785 (2014)

  • Kong, S., Zhou, S., Nie, Z., Wang, K.: The size-dependent natural frequency of Bernoulli–Euler micro-beams. Int. J. Eng. Sci. 46(5), 427–437 (2008)

    Article  MATH  Google Scholar 

  • Krylov, S., Ilic, B.R., Lulinsky, S.: Bistability of curved microbeams actuated by fringing electrostatic fields. Nonlinear Dyn. 66(3), 403–426 (2011)

    Article  MathSciNet  Google Scholar 

  • Li, H., Piekarski, B., De Voe, D.L., Balachandran, B.: Nonlinear oscillations of piezoelectric microresonators with curved cross-sections. Sens. Actuators, A 144(1), 194–200 (2008)

    Article  Google Scholar 

  • Ma, H.M., Gao, X.L., Reddy, J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56(12), 3379–3391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Nateghi, A., Salamat-talab, M.: Thermal effect on size dependent behavior of functionally graded microbeams based on modified couple stress theory. Compos. Struct. 96, 97–110 (2013)

    Article  Google Scholar 

  • Ramezani, S.: A micro scale geometrically non-linear Timoshenko beam model based on strain gradient elasticity theory. Int. J. Non Linear Mech. 47(8), 863–873 (2012)

  • Şimşek, M.: Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory. Int. J. Eng. Sci. 48(12), 1721–1732 (2010)

    Article  MATH  Google Scholar 

  • Wang, B., Zhao, J., Zhou, S.: A micro scale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech. A. Solids 29(4), 591–599 (2010)

    Article  Google Scholar 

  • Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

    Article  MATH  Google Scholar 

  • Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics. Springer, Heidelberg (2011)

    Book  Google Scholar 

  • Yu, Y., Wu, B., Lim, C.W.: Numerical and analytical approximations to large post-buckling deformation of MEMS. Int. J. Mech. Sci. 55(1), 95–103 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The financial support to this research by the start-up grant of the University of Wollongong is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mergen H. Ghayesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farokhi, H., Ghayesh, M.H. Nonlinear resonant response of imperfect extensible Timoshenko microbeams. Int J Mech Mater Des 13, 43–55 (2017). https://doi.org/10.1007/s10999-015-9316-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-015-9316-z

Keywords

Navigation