Skip to main content
Log in

A stabilized discrete shear gap extended finite element for the analysis of cracked Reissner–Mindlin plate vibration problems involving distorted meshes

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

In this work, a new approach in the framework of the local partition of unity finite element method (XFEM) to significantly improve the accuracy of natural frequency in free vibration analysis of cracked Reissner–Mindlin plates is presented. Different from previous approaches, the present formulation is expected to be more accurate and effective in modeling cracked plates by integrating the stabilized discrete shear gap (DSG) into the XFEM setting. Intensive numerical results at low frequency demonstrated that the novel DSG-based XFEM approach possesses the following desirable properties: (1) the awkwardness of transverse shear-locking phenomenon can be overcome easily; (2) the DSG-based XFEM can be applicable to both moderately thick and thin plates straightforwardly; (3) the representation of cracks is independent of finite element mesh; (4) mesh distortion is insensitive and controllable; (5) the accuracy of natural frequency obtained by the present method is high and (6) the present method uses three-node triangular elements that can be much easily generated automatically for problems even with complicated geometry. These properties of the DSG-based XFEM are confirmed through several numerical examples of cracked plates with different boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Bachene, M., Tiberkak, R., Rechak, S.: Vibration analysis of cracked plates using the extended finite element method. Arch. Appl. Mech. 79, 249–262 (2009)

    Article  MATH  Google Scholar 

  • Bathe, K.J., Dvorkin, E.N.: A four-node plate bending element based on Mindlin/Reissner theory and a mixed interpolation. Int. J. Numer. Methods Eng. 21, 367–383 (1985)

    Article  MATH  Google Scholar 

  • Bazeley, G.P., Cheung, Y.K., Irons, B.M., Zienkiewicz, O.C.: Triangular elements in plate bending conforming and non-conforming solutions. In: Proceedings of the Conference on Matrix Methods in Structural Mechanics, WPAFB, Ohio, pp. 547–576 (1965)

  • Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45, 601–620 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Bletzinger, K.U., Bischoff, M., Ramm, E.: A unified approach for shear-locking-free triangular and rectangular shell finite elements. Comput. Struct. 75, 321–334 (2000)

    Article  Google Scholar 

  • Bui, Q.T., Nguyen, N.M., Zhang, Ch.: A meshfree model without shear-locking for free vibration analysis of first-order shear deformable plates. Eng. Struct. 33, 3364–3380 (2011a)

    Article  Google Scholar 

  • Bui, Q.T., Nguyen, N.M., Zhang, Ch.: Buckling analysis of Reissner–Mindlin plates subjected to in-plane edge load using a shear-locking-free and meshfree method. Eng. Anal. Bound. Elem. 35, 1038–1053 (2011b)

    Article  MathSciNet  MATH  Google Scholar 

  • Cawley, P., Adams, R.D.: The location of defects in structures from measurements of natural frequencies. J. Strain Anal. 14, 49–57 (1979)

    Article  Google Scholar 

  • Cui, X.Y., Liu, G.R., Li, G.Y., Zhang, G.Y., Zheng, G.: Analysis of plates and shells using an edge-based smoothed finite element method. Comput. Mech. 45, 141–156 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Cui, X.Y., Liu, G.R., Li, G.: A smoothed Hermite radial point interpolation method for thin plate analysis. Arch. Appl. Mech. 81, 1–18 (2011)

    Article  MATH  Google Scholar 

  • Dolbow, J., Moes, N., Belytschko, T.: Modeling fracture in Mindlin–Reissner plates with the extended finite element method. Int. J. Solids Struct. 37, 7161–7183 (2000a)

    Article  MATH  Google Scholar 

  • Dolbow, J., Moes, N., Belytschko, T.: Discontinuous enrichment in finite elements with a partition of unity method. Finite Elem. Anal. Des. 36, 235–260 (2000b)

    Article  MATH  Google Scholar 

  • Dolbow, E.J.: An extended finite element method with discontinuous enrichment for applied mechanics. PhD thesis, Northwestern University (1999)

  • Elguedj, T., Gravouil, A., Maigre, H.: An explicit dynamics extended finite element method. Part 1: mass lumping for arbitrary enrichment functions. Comput. Methods Appl. Mech. Eng. 198, 2297–2317 (2009)

    Article  MATH  Google Scholar 

  • Kirchhoff, G.: Uber das gleichgwich und die bewegung einer elastischen scheibe. J. Angew. Math. 40, 51–88 (1850)

    Article  MathSciNet  MATH  Google Scholar 

  • Krawczuk, M., Ostachowicz, W.M.: A finite plate element for dynamic analysis of a cracked plate. Comput. Methods Appl. Mech. Eng. 115, 67–78 (1994)

    Article  Google Scholar 

  • Lyly, M., Stenberg, R., Vihinen, T.: A stable bilinear element for the Reissner–Mindlin plate model. Comput. Methods Appl. Mech. Eng. 110, 343–357 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Lynn, P.P., Kumbasar, N.: Free vibration of thin rectangular plates having narrow cracks with simply supported edges. In: Proceedings of the 10th Midwestern Mechanics Conference, Colorado State University, Fort Collins Co., pp. 911–928 (1967)

  • Menouillard, T., Réthoré, J., Combescure, A., Bung, H.: Efficient explicit time stepping for the extended finite element method. Int. J. Numer. Methods Eng. 68, 911–938 (2006)

    Article  MATH  Google Scholar 

  • Moes, N., Dolbow, J., Belytschko, T.: A finite element for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)

    Article  MATH  Google Scholar 

  • Natarajan, S., Baiz, P.M., Bordas, S., Rabczuk, T., Kerfriden, P.: Natural frequencies of cracked functionally graded material plates by the extended finite element method. Compos. Struct. 93, 3082–3092 (2011)

    Article  Google Scholar 

  • Qian, G.L., Gu, S.N., Jiang, J.S.: A finite element model of cracked plates and application to vibration problems. Comput. Struct. 39, 483–487 (1991)

    Article  Google Scholar 

  • Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12, A69–A77 (1945)

    MathSciNet  MATH  Google Scholar 

  • Simo, J.C., Hughes, T.J.R.: On the variational foundations of assumed strain methods. J. Appl. Mech. 53, 51–54 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Solecki, R.: Bending vibration of a simply supported rectangular plate with a crack parallel to one edge. Eng. Fract. Mech. 18, 1111–1118 (1983)

    Article  Google Scholar 

  • Song, J.-H., Belytschko, T.: Dynamic fracture of shells subjected to impulsive loads. J. Appl. Mech. 76, 051301 (2009)

    Article  Google Scholar 

  • Thompson, L.L., Thangavelu, S.R.: A stabilized MITC element for accurate wave response in Reissner–Mindlin plates. Comput. Struct. 80, 769–789 (2002)

    Article  Google Scholar 

  • Thompson, L.L.: On optimal stabilized MITC4 plate bending elements for accurate frequency response analysis. Comput. Struct. 81, 995–1008 (2003)

    Article  Google Scholar 

  • Wu, C.T., Wang, H.P.: An enhanced cell-based smoothed finite element method for the analysis of Reissner-Mindlin plate bending problems involving distorted mesh. Int. J. Numer. Methods Eng 95, 288–312 (2013)

    Article  Google Scholar 

  • Zeng, Q.L., Liu, Z.L., Xu, D.D., Zhuang, Z.: Modeling stationary and moving cracks in shells by X-FEM with CB shell elements. Sci. China Technol. Sci 57, 1276–1284 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The support by the Graint-in-Aid for Scientific Research (No. 26-04055) - Japan Society for the Promotion of Science (JSPS, ID No. P14055), and the National Natural Science Foundation of China (Grant No. 51179063) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tinh Quoc Bui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, T., Bui, T.Q., Liu, P. et al. A stabilized discrete shear gap extended finite element for the analysis of cracked Reissner–Mindlin plate vibration problems involving distorted meshes. Int J Mech Mater Des 12, 85–107 (2016). https://doi.org/10.1007/s10999-014-9282-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-014-9282-x

Keywords

Navigation