Numerical analysis of quasi-static fracture in functionally graded materials

Abstract

This work investigates the existing capabilities and limitations in numerical modeling of fracture problems in functionally graded materials (FGMs) by means of the well-known finite element code ABAQUS. Quasi-static crack initiation and growth in planar FGMs is evaluated. Computational results of fracture parameters are compared to experimental results and good agreement is obtained. The importance of the numerical fit of the elastic properties in the FE model is analyzed in depth by means of a sensitivity study and a novel method is presented. Several key computational issues derived from the continuous change of the material properties are also addressed and the source code of a user subroutine USDFLD is provided in the Appendix for an effective implementation of the property variation. The crack propagation path is calculated through the extended finite element method and subsequently compared to available experimental data. Suitability of local fracture criteria to simulate crack trajectories in FGMs is discussed and a new crack propagation criterion is suggested.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Abanto-Bueno, J., Lambros, J.: An experimental study of mixed mode crack initiation and growth in functionally graded materials. Exp. Mech. 46(2), 179–196 (2006)

    Article  Google Scholar 

  2. ABAQUS.: ABAQUS Version 6.13 Documentation. Dassault Systèmes Simulia Corp, Providence (2013)

  3. Anderson, T.L.: Fracture Mechanics. Fundamentals and Applications, 3rd edn. Taylor and Francis CRC Press, Boca Raton (2005)

    Google Scholar 

  4. Anlas, G., Santare, M.H., Lambros, J.: Numerical calculation of stress intensity factors in functionally graded materials. Int. J. Frac. 104(2), 131–143 (2000)

    Article  Google Scholar 

  5. Bao, G., Cai, H.: Delamination cracking in functionally graded coating/metal substrate systems. Acta. Mech. 45(3), 1055–1066 (1997)

    Google Scholar 

  6. Bao, G., Wang, L.: Multiple cracking in functionally graded ceramic/metal coatings. Int. J. Solids. Struct. 32(19), 2853–2871 (1995)

    Article  MATH  Google Scholar 

  7. Becker Jr, T.L., Cannon, R.M., Ritchie, R.O.: Finite crack kinking and T-stresses in functionally graded materials. Int. J. Solids. Struct. 38(32–33), 5545–5563 (2001)

    Article  MATH  Google Scholar 

  8. Butcher, R.J., Rousseau, C.E., Tippur, H.V.: A functionally graded particulate composite: preparation, measurements and failure analysis. Acta. Mater. 47(1), 259–268 (1999)

    Article  Google Scholar 

  9. Carrillo-Heian, E.M., Carpenter, R.D., Paulino, G.C., Gibeling, J.G.: Dense layered molybdenum disilicide-silicon carbide functionally graded composites formed by field activated synthesis. J. Am. Ceram. Soc. 84(5), 962–968 (2001)

    Article  Google Scholar 

  10. Chapa-Cabrera, J., Reimanis, I.E.: Crack deflection in compositionally graded Cu-W composites. Philos. Mag. A. 82(17–18), 3393–3403 (2002a)

    Google Scholar 

  11. Chapa-Cabrera, J., Reimanis, I.E.: Eects of residual stress and geometry on crack kink angles in graded composites. Eng. Fract. Mech. 69(14–16), 1667–1678 (2002b)

    Article  Google Scholar 

  12. Chen, J., Wu, L., Du, S.: A modified J integral for functionally graded materials. Mech. Res. Commun. 27(3), 301–306 (2000)

    Article  MATH  Google Scholar 

  13. Dolbow, J.E., Gosz, M.: On the computation of mixed-mode stress intensity factors in functionally graded materials. Int. J. Solids. Struct. 39(3), 2557–2574 (2002)

    Article  MATH  Google Scholar 

  14. Eischen, J.W.: Fracture of nonhomogeneous materials. Int. J. Frac. 34, 3–22 (1987)

    Google Scholar 

  15. Erdogan, F.: Fracture mechanics of functionally graded materials. Compos. Eng. 5(7), 753–770 (1995)

    Article  Google Scholar 

  16. Gasik, M.M.: Micromechanical modelling of functionally graded materials. Compos. Mater. Sci. 13, 42–55 (1998)

    Article  Google Scholar 

  17. Gu, P., Asaro, R.J.: Crack deflection in functionally graded materials. Int. J. Solids. Struct. 34(24), 3085–3098 (1997)

    Article  MATH  Google Scholar 

  18. Gu, P., Dao, M., Asaro, R.J.: A simplified method for calculating the crack-tip field of functionally graded materials using the domain integral. J. Appl. Mech. Trans. ASME. 34(1), 1–17 (1997)

    MATH  Google Scholar 

  19. Hashin, Z.: Analysis of composite materials—a survey. J. Appl. Mech. Trans. ASME. 50, 481–505 (1983)

    Article  MATH  Google Scholar 

  20. Healy, B., Gullerud, A., Koppenhoefer, K., Roy, A., RoyChowdhury, S.: MW.: WARP3D Release 17.3.2 Manual. Univ. of Illinois at Urbana-Champaign, Urbana (2012)

    Google Scholar 

  21. Jedamzik, R., Neubrand, A., Rdel, J.: Characterisation of electrochemically processed graded tungsten/copper composites. Mater. Sci. Forum. 782–7, 308–311 (2000)

    Google Scholar 

  22. Jin, Z.H., Noda, N.: Crack-tip singular fields in nonhomogeneous materials. J. Appl. Mech. Trans. ASME. 61, 738–740 (1994)

    Article  MATH  Google Scholar 

  23. Kawasaki, A., Watanabe, R.: Finite element analysis of thermal stress of the metal/ceramic multi-layer composites with compositional gradients. J. Jpn. Inst. Metals 51, 525–529 (1987)

    Google Scholar 

  24. Kim, JH.: Mixed-mode crack propagation in functionally graded materials. PhD thesis, University of Illinois at Urbana-Champaign (2003)

  25. Kim, J.H., Paulino, G.H.: Finite element evaluation of mixed-mode stress intensity factors in functionally graded materials. Int. J. Numer. Methods. Eng. 53(8), 1903–1935 (2002a)

    Article  MATH  Google Scholar 

  26. Kim, J.H., Paulino, G.H.: Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials. J. Appl. Mech. Trans. ASME. 69(4), 502–514 (2002b)

    Article  MATH  Google Scholar 

  27. Kim, J.H., Paulino, G.H.: T-stress, mixed-mode stress intensity factors, and crack initiation angles in functionally graded materials: a unified approach using the interaction integral method. Comput. Method. Appl. Mech. 192(11–12), 1463–1494 (2003)

    Article  MATH  Google Scholar 

  28. Krumova, M., Klingshirn, C., Haupert, F., Friedrich, K.: Microhardness studies on functionally graded polymer composites. Compos. Sci. Technol. 61(4), 557–563 (2001)

    Article  Google Scholar 

  29. Lambros, J., Santare, M.H., Li, H., Sapna III, G.H.: A novel technique for the fabrication of laboratory scale model functionally graded materials. Exp. Mech. 39(3), 184–190 (1999)

    Article  Google Scholar 

  30. Li, H., Lambros, J., Cheeseman, B.A., Santare, M.H.: Experimental investigation of the quasi-static fracture of functionally graded materials. Int. J. Solids. Struct. 37(27), 3715–3732 (2000)

    Article  MATH  Google Scholar 

  31. Marur, P.R., Tippur, H.V.: Numerical analysis of crack-tip fields in functionally graded materials with a crack normal to the elastic gradient. Int. J. Solids. Struct. 37(38), 5353–5370 (2000)

    Article  MATH  Google Scholar 

  32. Oral, A., Abanto-Bueno, J.L., Lambros, J., Anlas, G.: Crack initiation angles in functionally graded materials under mixed mode loading. AIP Conf. Proc. 973, 248–253 (2008a)

    Article  Google Scholar 

  33. Oral, A., Lambros, J., Anlas, G.: Crack initiation in functionally graded materials under mixed mode loading: experiments and simulations. J. Appl. Mech. Trans. ASME. 75(5), 0511,101 (2008)

  34. Parameswaran, V., Shukla, V.: Processing and characterisation of a model functionally graded material. J. Mater. Sci. 35, 21–29 (2000)

    Article  Google Scholar 

  35. Reiter, T., Dvorak, G.J., Tvergaard, V.: Micromechanical models for graded composite materials. J. Mech. Phys. Solids. 45(8), 1281–1302 (1997)

    Article  Google Scholar 

  36. Remmers, J.J.C., de Borst, R., Needleman, A.: The simulation of dynamic crack propagation using the cohesive segments method. J. Mech. Phys. Solids. 56, 70–92 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  37. Rice, J.R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. Trans. ASME. 35, 379–386 (1968)

    Article  Google Scholar 

  38. Riveiro, M.A., Gallego, R.: Boundary elements and the analog equation method for the solution of elastic problems in 3-D non-homogeneous bodies. Comput. Meth. Appl. Mech. Eng. 263, 12–19 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  39. Rousseau, C.E., Tippur, H.V.: Compositionally graded materials with cracks normal to the elastic gradient. Acta. Mater. 48, 4021–4033 (2000)

    Article  Google Scholar 

  40. Santare, M.H., Lambros, J.: Use of graded finite elements to model the behaviour of nonhomogeneous materials. J. Appl. Mech. Trans. ASME. 67, 819–822 (2000)

    Article  MATH  Google Scholar 

  41. Shih, C.F., Asaro, R.J.: Elastic-plastic analysis of cracks on bimaterial interfaces: part I small scale yielding. J. Appl. Mech. Trans. ASME. 58(2), 299–316 (1988)

    Article  Google Scholar 

  42. Song, J.H., Areias, P.M.A., Belytschko, T.: A method for dynamic crack and shear band propagation with phantom nodes. Int. J. Numer. Methods. Eng. 67, 868–893 (2006)

    Article  MATH  Google Scholar 

  43. Tilbrook, M.T., Moon, R.J., Hoffman, M.: Crack propagation in graded composites. Compos. Sci. Technol. 65, 201–220 (2005a)

    Article  Google Scholar 

  44. Tilbrook, M.T., Moon, R.J., Hoffman, M.: Finite element simulations of crack propagation in functionally graded materials under flexural loading. Eng. Fract. Mech. 72(16), 2444–2467 (2005b)

    Article  Google Scholar 

  45. Uemura, S.: The activities of FGM on new application. Mater. Sci. Forum. 423–425, 1–10 (2003)

    Article  Google Scholar 

  46. Walters, M.C., Paulino, G.H., Dodds Jr, R.H.: Computation of mixed-mode stress intensity factors for cracks in three-dimensional functionally graded solids. J. Eng. Mech. 132(1), 1–15 (2006)

    Article  Google Scholar 

  47. Zhang, C., Savadis, A., Savadis, G., Zhu, H.: Transient dynamic analysis of a cracked functionally graded material by a BIEM. Comp. Mater. Sci. 26, 167–174 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Ministry of Science and Innovation of Spain through the Grant DPI2010.21590.CO2.01.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Martínez-Pañeda.

Appendix A. User subroutine USDFLD FGMII

Appendix A. User subroutine USDFLD FGMII

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martínez-Pañeda, E., Gallego, R. Numerical analysis of quasi-static fracture in functionally graded materials. Int J Mech Mater Des 11, 405–424 (2015). https://doi.org/10.1007/s10999-014-9265-y

Download citation

Keywords

  • Functionally graded material (FGM)
  • Finite element method (FEM)
  • Fracture mechanics
  • Crack propagation
  • Extended finite element method (X-FEM)