Shape memory alloy actuator design: CASMART collaborative best practices and case studies

  • O. Benafan
  • J. Brown
  • F. T. Calkins
  • P. Kumar
  • A. P. Stebner
  • T. L. Turner
  • R. Vaidyanathan
  • J. Webster
  • M. L. Young
Article

Abstract

One goal of the Consortium for the Advancement of Shape Memory Alloy Research and Technology is to compile the collective design experiences of our member organizations into a single medium that researchers and engineers may use to make efficient and effective decisions when developing shape memory alloy (SMA) components and systems. Recent work toward this goal is presented through the framework of six fundamental design aspects we have identified, which include evaluation, alloy selection, processing and fabrication, testing and properties, modeling, and system integration considerations including control system design. Each aspect is documented in the light of enabling the design engineer to access the tools and information needed to successfully design and develop SMA systems. Application of these aspects is illustrated through case studies resulting from our own SMA designs. It is shown that there is not an obvious single, linear route a designer can adopt to navigate the path from concept to product. Each application brings unique challenges that demand a particular emphasis and priority for each engineering aspect involved in the development of a system actuated by SMAs.

Keywords

CASMART Shape memory alloy (SMA) Actuator design methodology Adaptive/active structures Smart materials, structures and systems 

References

  1. Achenbach, M., Muller, I.: Simulation of material behavior of alloys with shape memory. Arch. Mech. 37(6), 573–585 (1985)Google Scholar
  2. Ancker, C.J.J., Goodier, J.N.: Theory of pitch and curvature corrections for helical spring-I (tension). J. Appl. Mech. 25, 471–479 (1958)MATHGoogle Scholar
  3. Antico, F.C., Zavattieri, P.D., Hector Jr, L.G., Mance, A., Rodgers, W.R., Okonski, D.A.: Adhesion of nickel-titanium shape memory alloy wires to thermoplastic materials: theory and experiments. Smart Mater. Struct. 21(3), 035022 (2012)Google Scholar
  4. Arghavani, J., Auricchio, F., Naghdabadi, R., Reali, A., Sohrabpour, S.: A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings. Int. J. Plasticity 26(7), 976–991 (2010)MATHGoogle Scholar
  5. ASTM-F2004-05: Standard Test Method for Transformation Temperature of Nickel-Titanium Alloys by Thermal Analysis, F2004-05 (2010)Google Scholar
  6. ASTM-F2082-06: Standard Test Method for Determination of Transformation Temperature of Nickel-Titanium Shape Memory Alloys by Bend and Free Recovery. F2082-06 (2010)Google Scholar
  7. Atli, K.C., Karaman, I., Noebe, R.D., Garg, A., Chumlyakov, Y.I., Kireeva, I.V.: Shape memory characteristics of Ti49.5Ni25Pd25Sc0.5 high-temperature shape memory alloy after severe plastic deformation. Acta Mater. 59(12), 4747–4760 (2011)Google Scholar
  8. Aydoğmuş, T., Bor, E.T., Bor, Ş.: Phase transformation behavior of porous TiNi alloys produced by powder metallurgy using magnesium as a space holder. Metall. Mater. Trans. A 42(9), 2547–2555 (2011)Google Scholar
  9. Bandeira, E., Savi, M., Monteiro, P., Netto, T.: Finite element analysis of shape memory alloy adaptive trusses with geometrical nonlinearities. Arch. Appl. Mech. 76(3), 133–144 (2006)MATHGoogle Scholar
  10. Bansiddhi, A., Dunand, D.C.: Shape-memory NiTi foams produced by solid-state replication with NaF. Intermetallics 15(12), 1612–1622 (2007)Google Scholar
  11. Benafan, O., Noebe, R.D., Padula II, S.A., Gaydosh, D.J., Lerch, B.A., Garg, A., Bigelow, G.S., An, K., Vaidyanathan, R.: Temperature-dependent behavior of a polycrystalline NiTi shape memory alloy around the transformation regime. Scr. Mater. 68(18), 571–574 (2013a)Google Scholar
  12. Benafan, O., Padula II, S.A., Noebe, R.D., Brown, D.W., Clausen, B., Vaidyanathan, R.: An in situ neutron diffraction study of shape setting shape memory NiTi. Acta Mater. 61, 3585–3599 (2013b)Google Scholar
  13. Benafan, O., Vaidyanathan, R.: A shape memory alloy controlled heat pipe based thermal switch. In: Proceedings of ASME International Mechanical Engineering Congress and Exposition, Lake Buena Vista, vol. 11, pp. 107–109 (2009)Google Scholar
  14. Benafan, O.: Deformation and phase transformation processes in polycrystalline NiTi and NiTiHf high temperature shape memory alloys. Ph.D. Dissertation, University of Central Florida (2012)Google Scholar
  15. Benafan, O.: Design, fabrication and testing of a low temperature heat pipe thermal switch with shape memory helical actuators. M.S. Thesis, University of Central Florida (2008)Google Scholar
  16. Benafan, O., Noebe, R.D., Padula II, S.A., Vaidyanathan, R.: microstructural response during isothermal and isobaric loading of a precipitation-strengthened Ni-29.7Ti-20Hf high-temperature shape memory alloy. Metall. Mater. Trans. A 43A, 4539–4552 (2012a)Google Scholar
  17. Benafan, O., Padula II, S.A., Noebe, R.D., Sisneros, T.A., Vaidyanathan, R.: Role of B19′ martensite deformation in stabilizing two-way shape memory behavior in NiTi. J. Appl. Phys. 112(9), 093510 (2012b)Google Scholar
  18. Bertacchini, O.W., Lagoudas, D.C., Patoor, E.: Fatigue life characterization of shape memory alloys undergoing thermomechanical cyclic loading. In: Proceedings of SPIE, Smart Structures and Materials: Active Materials: Behavior and Mechanics, San Diego, CA, pp. 612–624. doi:10.1117/12.508207 (2003)
  19. Bertolino, G., Gruttadauria, A., Arneodo Larochette, P., Castrodeza, E.M., Baruj, A., Troiani, H.E.: Cyclic pseudoelastic behavior and energy dissipation in as-cast Cu-Zn-Al foams of different densities. Intermetallics 19(4), 577–585 (2011)Google Scholar
  20. Bhattacharya, K.: Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect. Oxford Series on Materials Modelling. Oxford University Press, Oxford (2003)Google Scholar
  21. Bhattacharya, K., Kohn, R.V.: Elastic energy minimization and the recoverable strains of polycrystalline shape-memory materials. Arch. Ration. Mech. Anal. 139(2), 99 (1997)MATHMathSciNetGoogle Scholar
  22. Bigelow, G., Noebe, R., Padula, S., Garg, A., Olson, D.: Development and characterization of improved NiTiPd high-temperature shape-memory alloys by solid-solution strengthening and thermomechanical processing. In: SMST 2006: Proceedings of of the International Conference on Shape Memory and Superelastic Technologies, pp. 113–131 (2008a)Google Scholar
  23. Bigelow, G.S., Gaydosh, D.J., Garg, A., Padula, S.A., Noebe, R.D.: Effects of stoichiometry on transformation temperatures and actuator-type performance of NiTiPd and NiTiPdX high-temperature shape memory alloys. In: SMST-2007: Proceedings of of the International Conference on Shape Memory and Superelastic Technologies, pp. 83–92 (2008b)Google Scholar
  24. Bigelow, G.S., Padula, S.A., Garg, A., Noebe, R.D.: Correlation between mechanical behavior and actuator-type performance of Ni-Ti-Pd high-temperature shape memory alloys—art. no. 65262B. Proc. Soc. Photo-Optical Instrumentation, vol. 6526, B5262 (2007)Google Scholar
  25. Bigelow, G.S.: Effects of Palladium Content, Quaternary Alloying, and Thermomechanical Processing on the Behavior of Ni-Ti-Pd Shape Memory Alloys for Actuator Applications. MS Thesis, Colorado School of Mines (2006)Google Scholar
  26. Bigelow, G.S., Padula II, S.A., Garg, A., Gaydosh, D., Noebe, R.D.: Characterization of ternary NiTiPd high-temperature shape-memory alloys under load-biased thermal cycling. Metall. Mater. Trans. A 41(12), 3065–3079 (2010)Google Scholar
  27. Bigelow, G.S., Garg, A., Padula Ii, S.A., Gaydosh, D.J., Noebe, R.D.: Load-biased shape-memory and superelastic properties of a precipitation strengthened high-temperature Ni50.3Ti29.7Hf20 alloy. Scr. Mater. 64(8), 725–728 (2011)Google Scholar
  28. Bo, Z.H., Lagoudas, D.C.: Thermomechanical modeling of polycrystalline SMAs under cyclic loading, part III: evolution of plastic strains and two-way shape memory effect. Int. J. Eng. Sci. 37(9), 1175–1203 (1999)MATHMathSciNetGoogle Scholar
  29. Boyd, J.G., Lagoudas, D.C.: A thermodynamical constitutive model for shape memory materials. 2. The SMA composite material. Int. J. Plasticity 12(7), 843–873 (1996)MATHGoogle Scholar
  30. Brinson, L.C.: One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J. Int. Mater. Syst. Struct. 4, 229–242 (1993)Google Scholar
  31. Brocca, M., Brinson, L.C., Bazant, Z.: Three-dimensional constitutive model for shape memory alloys based on microplane model. J. Mech. Phys. Solids 50(5), 1051–1077 (2002)MATHGoogle Scholar
  32. Buehler, W.J., Wang, F.E.: A summary of recent research on the nitinol alloys and their potential application in ocean engineering. Ocean Eng. 1(1), 105–120 (1968)Google Scholar
  33. Burton, D.S., Gao, X., Brinson, L.C.: Finite element simulation of a self-healing shape memory alloy composite. Mech. Mater. 38(5–6), 525–537 (2006)Google Scholar
  34. Butera, F., Bianconi, E.: EP1031444—Control device with a shape memory actuating member heated by induction. Italy Patent (2000)Google Scholar
  35. Calkins, F.T., Mabe, J.H.: Shape memory alloy based morphing chevrons: full scale static engine test. Paper No. AIAA-2007-3438. In: 13th AIAA/CEAS Aeroacoustics Conference, Rome, Italy (2007)Google Scholar
  36. Calkins, F., Butler, G., Mabe, J.: Variable geometry chevrons for jet noise reduction, AIAA-2006-2546. In: 12th AIAA/CEAS Aeroacoustics Conference, Cambridge (2006)Google Scholar
  37. Casati, R., Passaretti, F., Tuissi, A.: Effect of electrical heating conditions on functional fatigue of thin NiTi wire for shape memory actuators. Procedia Eng. 10, 3423–3428 (2011)Google Scholar
  38. Chan, C.W., Man, H.C.: Laser welding of thin foil nickel-titanium shape memory alloy. Opt. Laser. Eng. 49(1), 121–126 (2011)Google Scholar
  39. Chemisky, Y., Duval, A., Piotrowski, B., Ben-Zineb, T., Patoor, E.: numerical tool based on finite element method for SMA structures design. In: Smasis2008: Proceedings of the Asme Conference on Smart Materials, Adaptive Structures and Intelligent Systems—2008, vol. 1, pp. 411-419 (2009)Google Scholar
  40. Chen, S., Craft, W.J., Song, D.Y.: Nonlinear adaptive control of dynamic systems driven by shape memory alloy (SMA) actuators. In: IMECE 2008: Mechanical Systems and Control, vol. 11, pp. 767–774 (2009)Google Scholar
  41. Coughlin, D.R., Phillips, P.J., Bigelow, G.S., Garg, A., Noebe, R.D., Mills, M.J.: Characterization of the microstructure and mechanical properties of a 50.3Ni-29.7Ti-20Hf shape memory alloy. Scr. Mater. 67(1), 112–115 (2012)Google Scholar
  42. Cross, W.B., Kariotis, A.H., Stimler, F.J.: Nitinol Characterization Study. In: NASA CR-1433 (1969)Google Scholar
  43. Cui, D., Song, G.B., Li, H.N.: Modeling of the electrical resistance of shape memory alloy wires. Smart Mater. Struct. 19(5), 055019 (2010)Google Scholar
  44. Davis, B., Turner, T.L., Seelecke, S.: Measurement and prediction of the thermomechanical response of shape memory alloy hybrid composite beams. J. Int. Mater. Syst. Struct. 19(2), 129–143 (2008)Google Scholar
  45. DeCastro, J.A., Melcher, K.J., Noebe, R.D., Gaydosh, D.J.: Development of a numerical model for high-temperature shape memory alloys. Smart Mater. Struct. 16(6), 2080–2090 (2007)Google Scholar
  46. Dixon, J.R., Poli, C.: Engineering Design and Design for Manufacturing. Field Stone Publishers, Conway (1995)Google Scholar
  47. Dolce, M., Cardone, D.: Mechanical behaviour of shape memory alloys for seismic applications. 2. Austenite NiTi wires subjected to tension. Int. J. Mech. Sci. 43(11), 2657–2677 (2001)Google Scholar
  48. Dow Corning Corporation: Silane Coupling Agents, Form No. 95-719-01 (2009)Google Scholar
  49. Droney, M., Kaiboussi, N., Lemanski, J., Rodriguez, C., Woodruff, T.: Senior Design Project Report: Shape Memory Alloy Thermal Switch. University of Central Florida, Orlando (2003)Google Scholar
  50. Duerig, T., Melton, K.: Wide Hysteresis NiTiNb Alloys. The Martensitic Transformation in Science and Technology. DGM Informationsgesellschaft, Oberursel (1989)Google Scholar
  51. Duerig, T.W., Melton, K.N., Stoeckel, D., Wayman, C.M.: Engineering Aspects of Shape Memory Alloys. Butterworth-Heinemann, London (1990)Google Scholar
  52. Dynalloy, Inc.: Technical Characteristics of Flexinol Actuator Wires, Dynalloy Inc., Tustin (2011)Google Scholar
  53. Eggeler, G., Hornbogen, E., Yawny, A., Heckmann, A., Wagner, M.: Structural and functional fatigue of NiTi shape memory alloys. Mater. Sci. Eng. A 378(1–2), 24–33 (2004)Google Scholar
  54. Eggert, R.J.: Engineering Design. Pearson Prentice Hall, Upper Saddle River (2005)Google Scholar
  55. Russell, S.M.: Nitinol melting and fabrication. In: Russell, S.M., Pelton, A.R. (eds.) SMST 2010: International Conference on Shape Memory and Superelastic Technologies, Pacific Grove, CA, USA, pp. 1–9 (2000) Google Scholar
  56. Falvo, A., Furgiuele, F.M., Maletta, C.: Laser welding of a NiTi alloy: mechanical and shape memory behaviour. Mater. Sci. Eng. A 412(1–2), 235–240 (2005)Google Scholar
  57. Favier, D., Louche, H., Schlosser, P., Orgeas, L., Vacher, P., Debove, L.: Homogeneous and heterogeneous deformation mechanisms in an austenitic polycrystalline Ti-50.8 at.% Ni thin tube under tension. Investigation via temperature and strain fields measurements. Acta Mater. 55(16), 5310–5322 (2007)Google Scholar
  58. Figueiredo, A.M., Modenesi, P., Buono, V.: Low-cycle fatigue life of superelastic NiTi wires. Int. J. Fatigue 31(4), 751–758 (2009)Google Scholar
  59. Foroozmehr, A., Kermanpur, A., Ashrafizadeh, F., Kabiri, Y.: Effects of thermo-mechanical parameters on microstructure and mechanical properties of Ti-50 at.%Ni shape memory alloy produced by VAR method. Mater. Sci. Eng. A 535, 164–169 (2012)Google Scholar
  60. Frenzel, J., George, E.P., Dlouhy, A., Somsen, C., Wagner, M.F.X., Eggeler, G.: Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater. 58(9), 3444–3458 (2010)Google Scholar
  61. Frenzel, J., Burow, J.A., Payton, E.J., Rezanka, S., Eggeler, G.: Improvement of NiTi shape memory actuator performance through ultra-fine grained and nanocrystalline microstructures. Adv. Eng. Mater. 13(4), 256–268 (2011)Google Scholar
  62. Fukumoto, S., Inoue, T., Mizuno, S., Okita, K., Tomita, T., Yamamoto, A.: Friction welding of TiNi alloy to stainless steel using Ni interlayer. Sci. Technol. Weld. Join. 15(2), 124–130 (2010)Google Scholar
  63. Funakubo, H.: Shape Memory Alloys. Gordon and Breach, New York (1987)Google Scholar
  64. Furst, S.J., Seelecke, S.: Modeling and experimental characterization of the stress, strain, and resistance of shape memory alloy actuator wires with controlled power input. J. Int. Mater. Syst. Struct. 23(11), 1233–1247 (2012)Google Scholar
  65. Gall, K., Tyber, J., Wilkesanders, G., Robertson, S.W., Ritchie, R.O., Maier, H.J.: Effect of microstructure on the fatigue of hot-rolled and cold-drawn NiTi shape memory alloys. Mater. Sci. Eng. A 486(1–2), 389–403 (2008)Google Scholar
  66. Gao, X.J., Brinson, L.C.: SMA single crystal experiments and micromechanical modeling for complex thermomechanical loading. Smart Struct. Mater. 3992, 516–523 (2000)Google Scholar
  67. Gao, X., Brinson, L.C.: A simplified multivariant SMA model based on invariant plane nature of martensitic transformation. J. Int. Mater. Syst. Struct. 13(12), 795–810 (2002)Google Scholar
  68. Gao, X.: Multivariant Modeling and Characterization of SMAs Based on Hierarchical Characteristics of Martensite Crystallography. Northwestern University, Chicago (2002)Google Scholar
  69. Gao, X.J., Huang, M.S., Brinson, L.C.: A multivariant micromechanical model for SMAs Part 1. Crystallographic issues for single crystal model. Int. J. Plasticity 16(10–11), 1345–1369 (2000)MATHGoogle Scholar
  70. Gao, X., Brown, D.W., Brinson, L.C.: SMA texture and reorientation: simulations and neutron diffraction studies. In: Alison B. Flatau (ed.) Proceedings of SPIE. SPIE, San Diego, CA, pp. 715–726 (2005)Google Scholar
  71. Gedouin, P.-A., Delaleau, E., Bourgeot, J.-M., Join, C., Arbab Chirani, S., Calloch, S.: Experimental comparison of classical PID and model-free control: position control of a shape memory alloy active spring. Control Eng. Pract. 19(5), 433–441 (2011)Google Scholar
  72. Gloanec, A.L., Cerracchio, P., Reynier, B., Van Herpen, A., Riberty, P.: Fatigue crack initiation and propagation of a TiNi shape memory alloy. Scr. Mater. 62(10), 786–789 (2010)Google Scholar
  73. Gollerthan, S., Young, M.L., Neuking, K., Ramamurty, U., Eggeler, G.: Direct physical evidence for the back-transformation of stress-induced martensite in the vicinity of cracks in pseudoelastic NiTi shape memory alloys. Acta Mater. 57(19), 5892–5897 (2009)Google Scholar
  74. Gravatt, L.M., Mabe, J.H., Calkins, F.T., Hartl, D.J.: Characterization of Varied Geometry Shape Memory Alloy Beams. Paper presented at the SPIE Smart Structures and Materials, San Francisco (2010)Google Scholar
  75. Grossmann, C., Frenzel, J., Sampath, V., Depka, T., Oppenkowski, A., Somsen, C., Neuking, K., Theisen, W.: Processing and property assessment of NiTi and NiTiCu shape memory actuator springs. Materialwiss. Werkstofftech. 39(8), 499–510 (2008)Google Scholar
  76. Grummon, D.S., Shaw, J.A., Foltz, J.: Fabrication of cellular shape memory alloy materials by reactive eutectic brazing using niobium. Mater. Sci. Eng. A 438–440, 1113–1118 (2006)Google Scholar
  77. Gupta, K.: The Ni-Ti-Zr system (nickel-titanium-zirconium). J. Phase Equilib. 20(4), 441–448 (1999)Google Scholar
  78. Hartl, D.J. (2009): Modeling of Shape Memory Alloys Considering Rate-dependent Irrecoverable Strains. Texas A&MGoogle Scholar
  79. Hartl, D., Zimmerman, T., Dilligan, M., Mabe, J., Calkins F.: Analysis of shape memory alloy components using beam, shell, and continuum finite elements. In: Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems, vol. 1, pp. 295–305 (2010a)Google Scholar
  80. Hartl, D.J., Stebner, A.P., Chemisky, Y., Benafan, O., Brinson, L.C.: A framework for the unified calibration of 3D phenomenological shape memory alloy constitutive models. Smart Mater. Struct. submitted (ASME-SMASIS Special Issue) (2012)Google Scholar
  81. Hartl, D.J., Lagoudas, D.C.: Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys. Smart Mater. Struct. 18(10), 104017 (2009)Google Scholar
  82. Hartl, D.J., Chatzigeorgiou, G., Lagoudas, D.C.: Three-dimensional modeling and numerical analysis of rate-dependent irrecoverable deformation in shape memory alloys. Int. J. Plasticity 26(10), 1485–1507 (2010a)MATHGoogle Scholar
  83. Hartl, D.J., Lagoudas, D.C., Calkins, F.T., Mabe, J.H.: Use of a Ni60Ti shape memory alloy for active jet engine chevron application: I. Thermomechanical characterization. Smart Mater. Struct. 19, 015020 (2010b)Google Scholar
  84. Hartl, D.J., Mooney, J.T., Lagoudas, D.C., Calkins, F.T., Mabe, J.H.: Use of a Ni60Ti shape memory alloy for active jet engine chevron application: II. Experimentally validated numerical analysis. Smart Mater. Struct. 19(1), 015021 (2010c)Google Scholar
  85. Hartl, D.J., Lagoudas, D.C., Calkins, F.T.: Advanced methods for the analysis, design, and optimization of SMA-based aerostructures. Smart Mater. Struct. 20(9), 094006 (2011)Google Scholar
  86. Hassan, M.R., Scarpa, F., Mohamed, N.A., Ruzzene, M.: Tensile properties of shape memory alloy chiral honeycombs. Phys. Status Solidi (b) 245(11), 2440–2444 (2008)Google Scholar
  87. He, Y.J., Sun, Q.P.: Scaling relationship on macroscopic helical domains in NiTi tubes. Int. J. Solids Struct. 46(24), 4242–4251 (2009)MATHGoogle Scholar
  88. Hearn, E.J.: Mechanics of Materials—An Introduction to the Mechanics of Elastic and Plastic Deformation of Solids and Structural Materials, 3rd ed., vol. 1. Elsevier, Amsterdam (1997)Google Scholar
  89. Hirose, S., Ikuta, K., Umetani, Y.: Development of a shape memory alloy actuator. Improvement of output performance by the introduction of a s-mechanism. Adv. Robot. 3, 3–16 (1989)Google Scholar
  90. Hodgson, E.D.: Fabrication, Heat treatment and joining of nitinol components. In: Russell, S.M., Pelton, A. (eds.) Shape Memory and Superelastic Technologies (SMST), Pacific Grove, CA, pp. 11–24Google Scholar
  91. Hsieh, S.F., Chen, S.L., Lin, H.C., Lin, M.H., Chiou, S.Y.: The machining characteristics and shape recovery ability of Ti-Ni-X (X = Zr, Cr) ternary shape memory alloys using the wire electro-discharge machining. Int. J. Mach. Tool. Manuf. 49(6), 509–514 (2009)Google Scholar
  92. Huang, M., Brinson, L.C.: Multivariant model for single crystal shape memory alloy behavior. J. Mech. Phys. Solids 46(8), 1379–1409 (1998)MATHMathSciNetGoogle Scholar
  93. Huang, M.S., Gao, X.J., Brinson, L.C.: A multivariant micromechanical model for SMAs. Part 2. Polycrystal model. Int. J. Plasticity 16(10–11), 1371–1390 (2000)Google Scholar
  94. Iadicola, M.A., Shaw, J.A.: An experimental setup for measuring unstable thermo-mechanical behavior of shape memory alloy wire. J. Int. Mater. Syst. Struct. 13(2–3), 157–166 (2002)Google Scholar
  95. Ipek Nakas, G., Dericioglu, A.F., Bor, S.: Fatigue behavior of TiNi foams processed by the magnesium space holder technique. J. Mech. Behav. Biomed. 4(8), 2017–2023 (2011)Google Scholar
  96. Jackson, C.M., Wagner, H.J., Wasilewski, R.J.: 55-Nitinol the alloy with a memory: its physical metallurgy, properties, and applications. In: NASA SP-5110 (1972)Google Scholar
  97. Kelly, A., Bhattacharya, K.: A constitutive model for shape-memory alloys that accounts for initiation, reorientation, and saturation. J. Mech. Phys. Solids (submitted, 2012)Google Scholar
  98. Khamei, A.A., Dehghani, K.: A study on the mechanical behavior and microstructural evolution of Ni60wt%Ti40wt% (60Nitinol) intermetallic compound during hot deformation. Mater. Chem. Phys. 123(1), 269–277 (2010)Google Scholar
  99. Kim, J.I., Miyazaki, S.: Effect of nano-scaled precipitates on shape memory behavior of Ti-50.9at.%Ni alloy. Acta Mater. 53(17), 4545–4554 (2005)Google Scholar
  100. Kohl, M., Dittmann, D., Quandt, E., Winzek, B., Miyazaki, S., Allen, D.M.: Shape memory microvalves based on thin films or rolled sheets. Mater. Sci. Eng. A 273–275, 784–788 (1999)Google Scholar
  101. Kong, M.C., Axinte, D., Voice, W.: Challenges in using waterjet machining of NiTi shape memory alloys: an analysis of controlled-depth milling. J. Mater. Process. Technol. 211(6), 959–971 (2011)Google Scholar
  102. Kovarik, L., Yang, F., Garg, A., Diercks, D., Kaufman, M., Noebe, R.D., Mills, M.J.: Structural analysis of a new precipitate phase in high-temperature TiNiPt shape memory alloys. Acta Mater. 58(14), 4660–4673 (2010)Google Scholar
  103. Krishnan, V.B., Bewerse, C., Notardonato, W.U., Vaidyanathan, R.: A thermal conduction switch based on low hysteresis NiTiFe shape memory alloy helical springs. AIP Conf. Proc. 986(1), 3–9 (2008a)Google Scholar
  104. Krishnan, V.B., Manjeri, R.M., Clausen, B., Brown, D.W., Vaidyanathan, R.: Analysis of neutron diffraction spectra acquired in situ during mechanical loading of shape memory NiTiFe at low temperatures. Mater. Sci. Eng. A 481–482, 3–10 (2008b)Google Scholar
  105. Lagoudas, D.: Shape memory alloys : modeling and engineering applications, 1st edn. Springer, New York (2008)Google Scholar
  106. Lagoudas, D.C., Entchev, P.B., Popov, P., Patoor, E., Brinson, L.C., Gao, X.J.: Shape memory alloys, part II: modeling of polycrystals. Mech. Mater. 38(5–6), 430–462 (2006)Google Scholar
  107. Lagoudas, D.C., Miller, D.A., Rong, L., Kumar, P.K.: Thermomechanical fatigue of shape memory alloys. Smart Mater. Struct. 18(8), 085021 (2009)Google Scholar
  108. Langbein, S.: Development of standardised and integrated shape memory components in “one-module”—design. In: ESOMAT 2009—8th European Symposium on Martensitic Transformations (2009)Google Scholar
  109. Lemanski, J.L., Krishnan, V.B., Manjeri, R.M., Notardonato, W.U., Vaidyanathan, R.: A low hysteresis NiTiFe shape memory alloy based thermal conduction switch. Adv. Cryog. Eng. 52(1), 3–10 (2006)Google Scholar
  110. Lexcellent, C., Bourbon, G.: Thermodynamical model of cyclic behaviour of Ti-Ni and Cu-Zn-Al shape memory alloys under isothermal undulated tensile tests. Mech. Mater. 24(1), 59–73 (1996)Google Scholar
  111. Li, M.G., Sun, D.Q., Qiu, X.M., Liu, J.B., Miao, K., Wu, W.C.: Effects of silver based filler metals on microstructure and properties of laser brazed joints between TiNi shape memory alloy and stainless steel. Sci. Technol. Weld. Join. 12(2), 183–188 (2007)Google Scholar
  112. Li, H., Yuan, B., Gao, Y., Chung, C.Y., Zhu, M.: High-porosity NiTi superelastic alloys fabricated by low-pressure sintering using titanium hydride as pore-forming agent. J. Mater. Sci. 44(3), 875–881 (2009)Google Scholar
  113. Li, H.M., Sun, D.Q., Cai, X.L., Dong, P., Wang, W.Q.: Laser welding of TiNi shape memory alloy and stainless steel using Ni interlayer. Mater. Des. 39, 285–293 (2012)Google Scholar
  114. Li, H., Sun, D., Cai, X., Dong, P., Gu, X.: Laser welding of TiNi shape memory alloy and stainless steel using Co filler metal. Opt. Laser Technol. 45, 453–460 (2013)Google Scholar
  115. Ma, N., Song, G.: Control of shape memory alloy actuator using pulse width (PW) modulation. In: Proc. Soc. Photo-Opt. Ins.: Smart Structures and Materials 2002: Modeling, Signal Processing, and Control, vol. 4693, pp. 348–359 (2002)Google Scholar
  116. Ma, N., Song, G.: Control of shape memory alloy actuator using pulse width modulation. Smart Mater. Struct. 12(5), 712–719 (2003)MathSciNetGoogle Scholar
  117. Ma, N., Song, G., Lee, H.J.: Position control of shape memory alloy actuators with internal electrical resistance feedback using neural networks. Smart Mater. Struct. 13(4), 777–783 (2004)Google Scholar
  118. Ma, J., Karaman, I., Noebe, R.D.: High temperature shape memory alloys. Int. Mater. Rev. 55, 257–315 (2010)Google Scholar
  119. Mabe, J.H., Calkins, F.T., Butler, G.W.: Boeing’s variable geometry chevron: morphing aerostructure for jet noise reduction, AIAA-2006-2142. In: 47th AIAA Adaptive Structures Conference Newport, RI (2006b)Google Scholar
  120. Mabe, J., Ruggeri, R., Calkins, F.: Characterization of Nickel-Rich Nitinol Alloys for Actuator Development. In: SMST-2006: Proc. of the International Conference on Shape Memory and Superelastic Technologies, Pacific Grove, CA (2006a)Google Scholar
  121. Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium. Prentice-Hall Series in Engineering of the Physical Sciences. Prentice-Hall, Englewood Cliffs (1969)Google Scholar
  122. Man, H.C., Zhao, N.Q.: Enhancing the adhesive bonding strength of NiTi shape memory alloys by laser gas nitriding and selective etching. Appl. Surf. Sci. 253(3), 1595–1600 (2006)Google Scholar
  123. Manjeri, R.M.: Low temperature and reduced length scale behavior of shape memory and superelastic NiTi and NiTiFe alloys. Ph.D. Dissertation, University of Central Florida (2009)Google Scholar
  124. Martins, D., Ribeiro, L., Lopes, D., Catarino, I., Esteves, I.A.A.C., Mota, J.P.B., Bonfait, G.: Sorption characterization and actuation of a gas-gap heat switch. Sens. Actuators A 171(2), 324–331 (2011)Google Scholar
  125. Mavroidis, C.: Development of advanced actuators using shape memory alloys and electrorheological fluids. Res. Nondestr. Eval. 14(1), 1–32 (2002)Google Scholar
  126. Maynard, M. (2008): To Save Fuel, Airlines Find No Speck Too Small. In: New York Times. NY, NYGoogle Scholar
  127. Maziarz, W.: Structure changes of Co-Ni-Al ferromagnetic shape memory alloys after vacuum annealing and hot rolling. J. Alloy Compd. 448(1–2), 223–226 (2008)Google Scholar
  128. Mecham, M.: Smooth Start to GTF flight testing. In: Aviation Week and Space Technology, vol. 175, p. 40 (2011)Google Scholar
  129. Mehrabi, K., Bruncko, M., Kneissl, A.C.: Microstructure, mechanical and functional properties of NiTi-based shape memory ribbons. J. Alloy. Compd. 526, 45–52 (2012)Google Scholar
  130. MigaMotors: http://www.migamotors.com (2012)
  131. Mirzaeifar, R., DesRoches, R., Yavari, A.: A combined analytical, numerical, and experimental study of shape-memory-alloy helical springs. Int. J. Solids Struct. 48(3–4), 611–624 (2011)MATHGoogle Scholar
  132. Mohammad, T., Jeng-Jong, R., Chuh, M.: Thermal post-buckling and aeroelastic behaviour of shape memory alloy reinforced plates. Smart Mater. Struct. 11(2), 297 (2002)Google Scholar
  133. Morin, C., Moumni, Z., Zaki, W.: Direct numerical determination of the asymptotic cyclic behavior of pseudoelastic shape memory structures. J. Eng. Mech. ASCE 137(7), 497–503 (2011a)Google Scholar
  134. Morin, C., Moumni, Z., Zaki, W.: Thermomechanical coupling in shape memory alloys under cyclic loadings: experimental analysis and constitutive modeling. Int. J. Plasticity 27(12), 1959–1980 (2011b)MATHGoogle Scholar
  135. Neurohr, A.J., Dunand, D.C.: Mechanical anisotropy of shape-memory NiTi with two-dimensional networks of micro-channels. Acta Mater. 59(11), 4616–4630 (2011)Google Scholar
  136. Nishida, M., Wayman, C., Honma, T.: Precipitation processes in near-equiatomic TiNi shape memory alloys. Metall. Mater. Trans. A 17(9), 1505–1515 (1986)Google Scholar
  137. Noebe, R., Draper, S., Gaydosh, D., Garg, A., Lerch, B., Penney, N., Bigelow, G., Padula, S., Brown, J.: Effect of thermomechanical processing on the microstructure, properties, and work behavior of a Ti(50.5)Ni(29.5)Pt(20) high-temperature shape memory alloy. In: SMST 2006: Proceedings of the International Conference on Shape Memory and Superelastic Technologies, 409-426 (2008)Google Scholar
  138. Noebe, R., Gaydosh, D., Padula, S., Garg, A., Biles, T., Nathal, M.: Properties and potential of two (Ni,Pt)Ti alloys for use as high-temperature actuator materials. In: Proc. Soc. Photo-Opt. Ins.: Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics, vol. 5761, pp. 364–375 (2005)Google Scholar
  139. Noebe, R., Padula, S., Bigelowo, G., Rios, O., Garg, A., Lercf, B.: Properties of a Ni(19.5)Pd(30)Ti(50.5)high-temperature shape memory alloy in tension and compression—art. no. 617010. In: Proc. Soc. Photo-Opt. Ins.: Smart Structures and Materials 2006: Active Materials: Behavior and Mechanics, vol. 6170, p. 17010 (2006)Google Scholar
  140. Novak, V., Sittner, P., Dayananda, G.N., Braz-Fernandes, F.M., Mahesh, K.K.: Electric resistance variation of NiTi shape memory alloy wires in thermomechanical tests: Experiments and simulation. Mater. Sci. Eng. A 481–482, 127–133 (2008)Google Scholar
  141. Oehler, S.D., Hartl, D.J., Turner, T.L., Lagoudas, D.C.: Modeling fluid structure interaction with shape memory alloy actuated morphing aerostructures. In: Proc. Soc. Photo-Opt. Ins.: Industrial and Commercial Applications of Smart Structures Technologies, vol. 8343 (2012b)Google Scholar
  142. Oehler, S.D., Hartl, D.J., Lopez, R., Malak, R.J., Lagoudas, D.C.: Design optimization and uncertainty analysis of SMA morphing structures. Smart Mater. Struct. 21(9), 094016 (2012)Google Scholar
  143. Olsen, J.S., Zhang, Z.L., Lu, H., van der Eijk, C.: Fracture of notched round-bar NiTi-specimens. Eng. Fract. Mech. 84, 1–14 (2012)Google Scholar
  144. Olson, G.B., Cohen, M.: Mechanism for strain-induced nucleation of martensitic transformations. J. Less-Common Met. 28(1), 107 (1972)Google Scholar
  145. Olson, G.B., Owen, W.S.: Martensite : A Tribute to Morris Cohen. ASM International, Materials Park (1992)Google Scholar
  146. Otsuka, K., Ren, X.: Recent developments in the research of shape memory alloys. Intermetallics 7(5), 511–528 (1999)Google Scholar
  147. Otsuka, K., Ren, X.: Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater Sci. 50, 511–678 (2005)Google Scholar
  148. Otsuka, K., Wayman, C.M.: Shape Memory Materials. Cambridge University Press, Cambridge (1998)Google Scholar
  149. Otsuka, K., Wayman, C.M.: Shape Memory Materials. Cambridge University Press, Cambridge (1999)Google Scholar
  150. Padula II, S.A., Noebe, R., Bigelow, G., Culley, D., Stevens, M., Penney, N., Gaydosh, D., Quackenbush, T., Carpenter, B.: Development of a HTSMA-actuated surge control rod for high-temperature turbomachinery applications. Paper presented at the AIAA adaptive structures conference, Waikiki (2007)Google Scholar
  151. Padula, S., Bigelow, G., Noebe, R., Gaydosh, D., Garg, A.: Challenges and progress in the development of high-temperature shape memory alloys based on nitix compositions for high-force actuator applications. In: SMST 2006: Proceedings of the International Conference on Shape Memory and Superelastic Technologies, pp. 787–801 (2008)Google Scholar
  152. Padula II, S., Qiu, S., Gaydosh, D., Noebe, R., Bigelow, G., Garg, A., Vaidyanathan, R.: Effect of upper-cycle temperature on the load-biased, strain-temperature response of NiTi. Metall. Mater. Trans. 43A, 4610 (2012)Google Scholar
  153. Panico, M., Brinson, L.C.: A three-dimensional phenomenological model for martensite reorientation in shape memory alloys. J. Mech. Phys. Solids 55(11), 2491–2511 (2007)MATHMathSciNetGoogle Scholar
  154. Panico, M., Brinson, L.C.: Computational modeling of porous shape memory alloys. Int. J. Solids Struct. 45(21), 5613–5626 (2008)MATHGoogle Scholar
  155. Patel, M.M., Gordon, R.F.: An investigation of diverse surface finishes on fatigue properties of superelastic nitinol wire. In: SMST 2006: Proceedings of the International Conference on Shape Memory and Superelastic Technologies, Pacific Grove, CA (2006)Google Scholar
  156. Patoor, E., Bensalah, M.O., Eberhardt, A., Berveiller, M.: Micromechanical aspects of the shape memory behaviour. In: Proceedings of the International Conference on Martensitic Transformations (ICOMAT-92), pp. 401–406 (1993)Google Scholar
  157. Patoor, E., Eberhardt, A., Berveiller, M.: Micromechanical modelling of the shape memory behavior. In: Brinson, L.C., Moran, B. (eds.) Mechanics of Phase Transformation and Shape Memory Alloys 1994, pp. 23–27. ASME, New York (1994)Google Scholar
  158. Patoor, E., Lagoudas, D.C., Entchev, P.B., Brinson, L.C., Gao, X.J.: Shape memory alloys, part I: general properties and modeling of single crystals. Mech. Mater. 38(5–6), 391–429 (2006)Google Scholar
  159. Pourkhorshidi, S., Parvin, N., Kenevisi, M.S., Naeimi, M., Ebrahimnia Khaniki, H.: A study on the microstructure and properties of Cu-based shape memory alloy produced by hot extrusion of mechanically alloyed powders. Mater. Sci. Eng. A 556, 658–663 (2012)Google Scholar
  160. Qiu, S., Krishnan, V.B., Padula II, S.A., Noebe, R.D., Brown, D.W., Clausen, B., Vaidyanathan, R.: Measurement of the lattice plane strain and phase fraction evolution during heating and cooling in shape memory NiTi. Appl. Phys. Lett. 95(14), 141906 (2009)Google Scholar
  161. Qiu, S., Clausen, B., Padula II, S.A., Noebe, R.D., Vaidyanathan, R.: On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi. Acta Mater. 59, 5055–5066 (2011)Google Scholar
  162. Redmond, J.A., Brei, D., Luntz, J., Browne, A.L., Johnson, N.L.: Behavioral model and experimental validation for a spool-packaged shape memory alloy actuator. In: Proc. Soc. Photo-Opt. Ins.: Industrial and Commercial Applications of Smart Structures Technologies, San Diego, CA, pp. 693004–693013 (2008b)Google Scholar
  163. Redmond, J.A., Brei, D., Luntz, J., Browne, A.L., Johnson, N.L.: Behavioral model and experimental validation for a spool-packaged shape memory alloy actuator—art. no. 693004. In: Proc. Soc. Photo-Opt. Ins.: Industrial and Commercial Applications of Smart Structures Technologies 2008, vol. 6930, p. 93004 (2008a)Google Scholar
  164. Reedlunn, B., Shaw, J., Daly, S.: Vol. 1 of active materials, M.a.B.-h.M., simulation and control: shape memory alloy cables: exploratory experiments. In: Proceedings of the ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS 2009), Oxnard, CA, pp. 149–160 (2009)Google Scholar
  165. Reedlunn, B., Shaw, J.: Shape memory alloy cables. In: Dapino, M.J., Ounaies, Z. (eds.) Proceedings of the SPIE 15th Annual International Symposium in Smart Structures and Materials, San Diego, CA, p. 69291G (2008)Google Scholar
  166. Reedlunn, B., Shaw, J., Daly, S.: Pseudoelastic shape memory alloy cables. In: Grummon, D.S., Mitchell, M.R., Mertmann, M. (eds.) SMST 2010: Proceedings of the International Conference on Shape Memory and Superelastic Technologies, Pacific Grove, CA. New York: Springer (2010)Google Scholar
  167. Resnina, N., Belayev, S., Voronkov, A.: Influence of chemical composition and pre-heating temperature on the structure and martensitic transformation in porous TiNi-based shape memory alloys, produced by self-propagating high-temperature synthesis. Intermetallics 32, 81–89 (2013)Google Scholar
  168. Sadjadpour, A., Bhattacharya, K.: A micromechanics-inspired constitutive model for shape-memory alloys. Smart Mater. Struct. 16(5), 1751–1765 (2007)Google Scholar
  169. Saleeb, A.F., Padula, S.A., Kumar, A.: A multi-axial, multimechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermomechanical loading conditions. Int. J. Plasticity 27(5), 655–687 (2011)MATHGoogle Scholar
  170. Savi, M.A., Pacheco, P.M.C.L., Braga, A.M.B.: Chaos in a shape memory two-bar truss. Int. J. Nonlinear Mech. 37(8), 1387–1395 (2002)MATHGoogle Scholar
  171. Schaffer, J.E., Plumley, D.L.: Fatigue performance of nitinol round wire with varying cold work reductions. J. Mater. Eng. Perform. 18(5–6), 563 (2009)Google Scholar
  172. Seelecke, S.: Modeling the dynamic behavior of shape memory alloys. Int. J. Nonlinear Mech. 37(8), 1363–1374 (2002)MATHGoogle Scholar
  173. Sever, K., Sarikanat, M., Seki, Y., Tavman, I.H.: Concentration effect of γ-glycidoxypropyltrimethoxysilane on the mechanical properties of glass fiber–epoxy composites. Polym. Compos. 30(9), 1251–1257 (2009)Google Scholar
  174. Shaw, J.A.: Simulations of localized thermo-mechanical behavior in a NiTi shape memory alloy. Int. J. Plasticity 16(5), 541–562 (2000)MATHGoogle Scholar
  175. Shaw, J.A., Kyriakides, S.: Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension. Int. J. Plasticity 13(10), 837–871 (1997a)Google Scholar
  176. Shaw, J.A., Kyriakides, S.: On the nucleation and propagation of phase transformation fronts in a NiTi alloy. Acta Mater. 45(2), 683–700 (1997b)Google Scholar
  177. Shiue, R.H., Wu, S.K.: Infrared brazing of Ti50Ni50 shape memory alloy using two Ag-Cu-Ti active braze alloys. Intermetallics 14(6), 630–638 (2006)Google Scholar
  178. Smith, S.A., Hodgson, E.D.: Shape setting nitinol. In: Shrivastava, S. (ed.) Materials and Processes for Medical Devices Conference, Anaheim, CA, pp. 266–270 (2004)Google Scholar
  179. Smith, N.A., Antoun, G.G., Ellis, A.B., Crone, W.C.: Improved adhesion between nickel-titanium shape memory alloy and a polymer matrix via silane coupling agents. Compos A Appl. Sci. 35(11), 1307–1312 (2004)Google Scholar
  180. Somsen, C., Zähres, H., Kästner, J., Wassermann, E.F., Kakeshita, T., Saburi, T.: Influence of thermal annealing on the martensitic transitions in Ni-Ti shape memory alloys. Mater. Sci. Eng. A 273–275, 310–314 (1999)Google Scholar
  181. Song, G.: Robust position regulation of a shape memory alloy wire actuator. Proc. Inst. Mech. Eng. I 216(I3), 301–308 (2002)Google Scholar
  182. Song, G., Chaudhry, V., Batur, C.: A new approach to the precision tracking control of shape-memory alloy actuators using neural networks and a sliding-mode based robust controller. In: Mater. Sci. Forum: Shape Memory Materials and Its Applications, vol. 394-3, pp. 83–86 (2001)Google Scholar
  183. Song, G.: Robust position regulation of a rotary servo actuated by a shape memory alloy wire. In: ISIE 2001. IEEE International Symposium on Industrial Electronics Proceedings, pp. 1923–1928 (2001a)Google Scholar
  184. Song, G.: Robust position regulation of a rotary servo actuated by a shape memory alloy wire. In: ISIE 2001: IEEE International Symposium on Industrial Electronics Proceedings, vols. I–III, pp. 1923–1928 (2001b)Google Scholar
  185. Song, G.B., Kelly, B., Agrawal, B.N.: Active position control of a shape memory alloy wire actuated composite beam. In: Proc. Soc. Photo-Opt. Ins.: Smart Structures and Materials 1999: Mathematics and Control in Smart Structures, vol. 3667, pp. 755–766 (1999)Google Scholar
  186. Song, G., Ma, N.: Control of shape memory alloy actuators using Pulse-Width Pulse-Frequency (PWPF) modulation. J. Int. Mater. Syst. Struct. 14(1), 15–22 (2003)Google Scholar
  187. Song, G.B., Ma, N.: Robust control of a shape memory alloy wire actuated flap. Smart Mater. Struct. 16(6), N51–N57 (2007)Google Scholar
  188. Song, G., Quinn, D.D.: Experimental study of the robust tracking control of a shape memory alloy wire actuator. J. Dyn. Syst. 126(3), 674–677 (2004)Google Scholar
  189. Song, G.B., Kelly, B., Agrawal, B.N.: Active position control of a shape memory alloy wire actuated composite beam. Smart Mater. Struct. 9(5), 711–716 (2000)Google Scholar
  190. Song, G., Chaudhry, V., Batur, C.: A neural network inverse model for a shape memory alloy wire actuator. J. Int. Mater. Syst. Struct. 14(6), 371–377 (2003a)Google Scholar
  191. Song, G., Chaudhry, V., Batur, C.: Precision tracking control of shape memory alloy actuators using neural networks and a sliding-mode based robust controller. Smart Mater. Struct. 12(2), 223–231 (2003b)Google Scholar
  192. Song, G.B., Ma, N., Li, L.Y., Penney, N., Barr, T., Lee, H.J., Arnold, S.: Design and control of a proof-of-concept active jet engine intake using shape memory alloy actuators. Smart Struct. Syst. 7(1), 1–13 (2011)Google Scholar
  193. Stebner, A.P.: Development, Characterization, and Application of NiTiPdPt High-Temperature Shape Memory Alloy Helical Actuators. The University of Akron, Akron (2007)Google Scholar
  194. Stebner, A.P., Brinson, L.C.: Algorithms for explicit finite element implementation of a numerically improved three dimensional constitutive model for shape memory alloys. Comput. Methods Appl. Mech. Eng. 257, 17–35 (2013)MathSciNetGoogle Scholar
  195. Stebner, A., Padula, S.A., Noebe, R.D., Quinn, D.D. (2008): Characterization of Ni19.5Ti50.5Pd25Pt5 high-temperature shape memory alloy springs and their potential application in aeronautics—art. no. 69280X. In: Proc. Soc. Photo-Opt. Ins.: Active and Passive Smart Structures and Integrated Systems, vol. 6928Google Scholar
  196. Stebner, A., Padula, S., Noebe, R., Lerch, B., Quinn, D.: Development, characterization, and design considerations of Ni19.5Ti50.5Pd25Pt5 high-temperature shape memory alloy helical actuators. J. Int. Mater. Syst. Struct. 20(17), 2107–2126 (2009)Google Scholar
  197. Stebner, A., Gao, X., Brown, D.W., Brinson, L.C.: Neutron diffraction studies and multivariant simulations of shape memory alloys: empirical texture development—mechanical response relations of martensitic nickel-titanium. Acta Mater. 59(7), 2841–2849 (2011)Google Scholar
  198. Stebner, A.P.: Ph.D. Dissertation, Northwestern University (2012)Google Scholar
  199. Stebner, A.P., Brown, D.W., Brinson, L.C.: Young’s modulus evolution and texture-based elastic-inelastic strain partitioning during large uniaxial deformations of monoclinic nickel-titanium. Acta Mater. 61(6), 1944–1956 (2013)Google Scholar
  200. Sun, Q.P., Hwang, K.C.: Micromechanics modeling for the constitutive behavior of polycrystalline shape memory alloys. 1. Derivation of general relations. J. Mech. Phys. Solids 41(1), 1–17 (1993)MATHGoogle Scholar
  201. Sun, L., Zhao, Y., Huang, W.M., Tong, T.H.: Formation of combined surface features of protrusion array and wrinkles atop shape-memory polymer. Surf. Rev. Lett. 16(06), 929–933 (2009)Google Scholar
  202. Sun, L., Huang, W.M., Ding, Z., Zhao, Y., Wang, C.C., Purnawali, H., Tang, C.: Stimulus-responsive shape memory materials: a review. Mater. Des. 33, 577–640 (2012)Google Scholar
  203. Tanaka, K., Iwasaki, R.: A phenomenological theory of transformation superplasticity. Eng. Fract. Mech. 21(4), 709–720 (1985)Google Scholar
  204. Telezygology: http://www.tz.net (2012)
  205. Thamburaja, P.: Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys. J. Mech. Phys. Solids 53(4), 825–856 (2005)MATHMathSciNetGoogle Scholar
  206. Thamburaja, P., Anand, L.: Polycrystalline shape-memory materials: effect of crystallographic texture. J. Mech. Phys. Solids 49(4), 709–737 (2001)MATHGoogle Scholar
  207. Theisen, W., Schuermann, A.: Electro discharge machining of nickel-titanium shape memory alloys. Mater. Sci. Eng. A 378(1–2), 200–204 (2004)Google Scholar
  208. Tobushi, H., Hachisuka, T., Yamada, S., Lin, P.-H.: Rotating-bending fatigue of a TiNi shape-memory alloy wire. Mech. Mater. 26(1), 35–42 (1997)Google Scholar
  209. Turner, T.L.: Dynamic response tuning of composite beams by embedded shape memory alloy actuators. Smart Struct. Mater. 3991, 377–388 (2000a)Google Scholar
  210. Turner, T.L.: A new thermoelastic model for analysis of shape memory alloy hybrid composites. J. Int. Mater. Syst. Struct. 11(5), 382–394 (2000b)Google Scholar
  211. Turner, T.L. (2001): Thermomechanical Response of Shape Memory Alloy Hybrid Composites NASA/TM-2001-210656Google Scholar
  212. Turner, T.L.: SMA hybrid composites for dynamic response abatement applications. J. Vib. Acoust. 127(3), 273–279 (2005)Google Scholar
  213. Turner, T.L., Patel, H.D.: Analysis of SMA hybrid composite structures in MSC.Nastran and Abaqus. J. Int. Mater. Syst. Struct. 18, 435–447 (2007)Google Scholar
  214. Turner, T.L., Patel, H.D.: Input Files and Procedures for Analysis of SMA Hybrid Composite Beams in MSC.Nastran and Abaqus. NASA/TM-2005-213517 (January 2005)Google Scholar
  215. Turner, T.L., Buehrle, R.D., Cano, R.J., Fleming, G.A.: Modeling, fabrication, and testing of a SMA hybrid composite jet engine chevron concept. J. Int. Mater. Syst. Struct. 17(6), 483–497 (2006)Google Scholar
  216. Turner, T.L., Cabell, R.H., Cano, R.J., Silcox, R.J.: Development of a preliminary model-scale adaptive jet engine chevron. AIAA J. 46(10), 2545–2557 (2008)Google Scholar
  217. Wagner, M., Sawaguchi, T., Kaustrater, G., Hoffken, D., Eggeler, G.: Structural fatigue of pseudoelastic NiTi shape memory wires. Mater. Sci. Eng. A 378(1–2), 105–109 (2004)Google Scholar
  218. Wahl, A.M.: Mechanical Springs. McGraw-Hill, New York (1963)Google Scholar
  219. Weinert, K., Petzoldt, V.: Machining of NiTi based shape memory alloys. Mater. Sci. Eng. A 378(1–2), 180–184 (2004)Google Scholar
  220. Weinert, K., Petzoldt, V., Kötter, D.: Turning and drilling of NiTi shape memory alloys. CIRP Ann. Manuf. Technol. 53(1), 65–68 (2004)Google Scholar
  221. Wessels, M., Hekman, E., Verkerke, B.: Influence of prestrain, heat treatment and surface treatment on bending fatigue of NiTi rod. J. Biomech. 45(Suppl 1), 54 (2012)Google Scholar
  222. Williams, E.A., Shaw, G., Elahinia, M.: Control of an automotive shape memory alloy mirror actuator. Mechatronics 20(5), 527–534 (2010)Google Scholar
  223. Wojcik, C.: Properties and heat treatment of high transition temperature Ni-Ti-Hf alloys. J. Mater. Eng. Perform. 18(5), 511–516 (2009)Google Scholar
  224. Wojcik, C.: Shape memory properties of nickel rich Ni-Ti alloys. In: Pelton, A., Hodgson, R., Duerig, T. (eds.) SMST 2003: International Conference on Shape Memory and Superelastic Technologies, pp. 43–52 (2003)Google Scholar
  225. Wu, M.H.: Fabrication of nitinol materials and components. Mater. Sci. Forum 394–395, 285–292 (2002)Google Scholar
  226. Wu, K., Ma, J.L.: A review of high-temperature shape memory alloys. In: Russell, S.M., Pelton, A.R. (eds.) SMST 2000: International Conference on Shape Memory and Superelastic Technologies, Pacific Grove, CA, USA 2000, pp. 153–161 (2000)Google Scholar
  227. Wu, S.K., Lin, H.C., Yen, Y.C., Chen, J.C.: Wire drawing conducted in the R-phase of TiNi shape memory alloys. Mater. Lett. 46(2–3), 175–180 (2000)Google Scholar
  228. Yamauchi, K., Ohkata, I., Tsuchiya, K., Miyazaki, S.: Shape Memory and Superelastic Alloys: Technologies and Applications. Woodhead Publications, Cambridge (2011)Google Scholar
  229. Yan, X., Yang, D., Liu, X.: Electrochemical behavior of YAG laser-welded NiTi shape memory alloy. Trans. Nonferrous Met. Soc. 16(3), 572–576 (2006)MathSciNetGoogle Scholar
  230. Young, M., Wagner, M.-X., Frenzel, J., Schmahl, W., Eggeler, G.: Phase volume fractions and strain measurements in an ultrafine-grained NiTi shape-memory alloy during tensile loading. Acta Mater. 58, 2344–2354 (2010)Google Scholar
  231. Young, M.L., DeFouw, J.D., Frenzel, J., Dunand, D.C.: Cast-replicated NiTiCu foams with superelastic properties. Metall. Mater. Trans. A 43(8), 2939–2944 (2012)Google Scholar
  232. Zarnetta, R., Takahashi, R., Young, M.L., Savan, A., Furuya, Y., Thienhaus, S., Maaß, B., Rahim, M., Frenzel, J., Brunken, H., Chu, Y.S., Srivastava, V., James, R.D., Takeuchi, I., Eggeler, G., Ludwig, A.: Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability. Adv. Funct. Mater. 20(12), 1917–1923 (2010)Google Scholar
  233. Zhang, Y., Jiang, S., Hu, L., Liang, Y.: Deformation mechanism of NiTi shape memory alloy subjected to severe plastic deformation at low temperature. Mater. Sci. Eng. A 559, 607–614 (2013)Google Scholar
  234. Zurbitu, J., Santamarta, R., Picornell, C., Gan, W.M., Brokmeier, H.G., Aurrekoetxea, J.: Impact fatigue behavior of superelastic NiTi shape memory alloy wires. Mater. Sci. Eng. A 528(2), 764–769 (2010)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2013

Authors and Affiliations

  • O. Benafan
    • 1
  • J. Brown
    • 2
  • F. T. Calkins
    • 3
  • P. Kumar
    • 4
  • A. P. Stebner
    • 5
    • 11
  • T. L. Turner
    • 6
  • R. Vaidyanathan
    • 7
  • J. Webster
    • 8
  • M. L. Young
    • 9
    • 10
  1. 1.Structures and Materials DivisionNASA Glenn Research CenterClevelandUSA
  2. 2.Dynalloy, Inc.TustinUSA
  3. 3.The Boeing CompanySeattleUSA
  4. 4.Department of Aerospace EngineeringTexas A&M UniversityCollege StationUSA
  5. 5.Department of Mechanical EngineeringNorthwestern UniversityEvanstonUSA
  6. 6.Structural Acoustics Branch, NASA Langley Research CenterHamptonUSA
  7. 7.Advanced Materials Processing and Analysis Center (AMPAC), Mechanical, Materials, and Aerospace Engineering DepartmentUniversity of Central FloridaOrlandoUSA
  8. 8.Rolls-Royce plcDerbyUK
  9. 9.ATI Wah ChangAlbanyUSA
  10. 10.Department of Materials Science and EngineeringThe University of North TexasDentonUSA
  11. 11.Mechanical EngineeringColorado School of MinesGoldenUSA

Personalised recommendations