Skip to main content
Log in

Shape memory alloy actuator design: CASMART collaborative best practices and case studies

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

One goal of the Consortium for the Advancement of Shape Memory Alloy Research and Technology is to compile the collective design experiences of our member organizations into a single medium that researchers and engineers may use to make efficient and effective decisions when developing shape memory alloy (SMA) components and systems. Recent work toward this goal is presented through the framework of six fundamental design aspects we have identified, which include evaluation, alloy selection, processing and fabrication, testing and properties, modeling, and system integration considerations including control system design. Each aspect is documented in the light of enabling the design engineer to access the tools and information needed to successfully design and develop SMA systems. Application of these aspects is illustrated through case studies resulting from our own SMA designs. It is shown that there is not an obvious single, linear route a designer can adopt to navigate the path from concept to product. Each application brings unique challenges that demand a particular emphasis and priority for each engineering aspect involved in the development of a system actuated by SMAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  • Achenbach, M., Muller, I.: Simulation of material behavior of alloys with shape memory. Arch. Mech. 37(6), 573–585 (1985)

    Google Scholar 

  • Ancker, C.J.J., Goodier, J.N.: Theory of pitch and curvature corrections for helical spring-I (tension). J. Appl. Mech. 25, 471–479 (1958)

    MATH  Google Scholar 

  • Antico, F.C., Zavattieri, P.D., Hector Jr, L.G., Mance, A., Rodgers, W.R., Okonski, D.A.: Adhesion of nickel-titanium shape memory alloy wires to thermoplastic materials: theory and experiments. Smart Mater. Struct. 21(3), 035022 (2012)

    Google Scholar 

  • Arghavani, J., Auricchio, F., Naghdabadi, R., Reali, A., Sohrabpour, S.: A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings. Int. J. Plasticity 26(7), 976–991 (2010)

    MATH  Google Scholar 

  • ASTM-F2004-05: Standard Test Method for Transformation Temperature of Nickel-Titanium Alloys by Thermal Analysis, F2004-05 (2010)

  • ASTM-F2082-06: Standard Test Method for Determination of Transformation Temperature of Nickel-Titanium Shape Memory Alloys by Bend and Free Recovery. F2082-06 (2010)

  • Atli, K.C., Karaman, I., Noebe, R.D., Garg, A., Chumlyakov, Y.I., Kireeva, I.V.: Shape memory characteristics of Ti49.5Ni25Pd25Sc0.5 high-temperature shape memory alloy after severe plastic deformation. Acta Mater. 59(12), 4747–4760 (2011)

    Google Scholar 

  • Aydoğmuş, T., Bor, E.T., Bor, Ş.: Phase transformation behavior of porous TiNi alloys produced by powder metallurgy using magnesium as a space holder. Metall. Mater. Trans. A 42(9), 2547–2555 (2011)

    Google Scholar 

  • Bandeira, E., Savi, M., Monteiro, P., Netto, T.: Finite element analysis of shape memory alloy adaptive trusses with geometrical nonlinearities. Arch. Appl. Mech. 76(3), 133–144 (2006)

    MATH  Google Scholar 

  • Bansiddhi, A., Dunand, D.C.: Shape-memory NiTi foams produced by solid-state replication with NaF. Intermetallics 15(12), 1612–1622 (2007)

    Google Scholar 

  • Benafan, O., Noebe, R.D., Padula II, S.A., Gaydosh, D.J., Lerch, B.A., Garg, A., Bigelow, G.S., An, K., Vaidyanathan, R.: Temperature-dependent behavior of a polycrystalline NiTi shape memory alloy around the transformation regime. Scr. Mater. 68(18), 571–574 (2013a)

    Google Scholar 

  • Benafan, O., Padula II, S.A., Noebe, R.D., Brown, D.W., Clausen, B., Vaidyanathan, R.: An in situ neutron diffraction study of shape setting shape memory NiTi. Acta Mater. 61, 3585–3599 (2013b)

  • Benafan, O., Vaidyanathan, R.: A shape memory alloy controlled heat pipe based thermal switch. In: Proceedings of ASME International Mechanical Engineering Congress and Exposition, Lake Buena Vista, vol. 11, pp. 107–109 (2009)

  • Benafan, O.: Deformation and phase transformation processes in polycrystalline NiTi and NiTiHf high temperature shape memory alloys. Ph.D. Dissertation, University of Central Florida (2012)

  • Benafan, O.: Design, fabrication and testing of a low temperature heat pipe thermal switch with shape memory helical actuators. M.S. Thesis, University of Central Florida (2008)

  • Benafan, O., Noebe, R.D., Padula II, S.A., Vaidyanathan, R.: microstructural response during isothermal and isobaric loading of a precipitation-strengthened Ni-29.7Ti-20Hf high-temperature shape memory alloy. Metall. Mater. Trans. A 43A, 4539–4552 (2012a)

    Google Scholar 

  • Benafan, O., Padula II, S.A., Noebe, R.D., Sisneros, T.A., Vaidyanathan, R.: Role of B19′ martensite deformation in stabilizing two-way shape memory behavior in NiTi. J. Appl. Phys. 112(9), 093510 (2012b)

    Google Scholar 

  • Bertacchini, O.W., Lagoudas, D.C., Patoor, E.: Fatigue life characterization of shape memory alloys undergoing thermomechanical cyclic loading. In: Proceedings of SPIE, Smart Structures and Materials: Active Materials: Behavior and Mechanics, San Diego, CA, pp. 612–624. doi:10.1117/12.508207 (2003)

  • Bertolino, G., Gruttadauria, A., Arneodo Larochette, P., Castrodeza, E.M., Baruj, A., Troiani, H.E.: Cyclic pseudoelastic behavior and energy dissipation in as-cast Cu-Zn-Al foams of different densities. Intermetallics 19(4), 577–585 (2011)

    Google Scholar 

  • Bhattacharya, K.: Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect. Oxford Series on Materials Modelling. Oxford University Press, Oxford (2003)

  • Bhattacharya, K., Kohn, R.V.: Elastic energy minimization and the recoverable strains of polycrystalline shape-memory materials. Arch. Ration. Mech. Anal. 139(2), 99 (1997)

    MATH  MathSciNet  Google Scholar 

  • Bigelow, G., Noebe, R., Padula, S., Garg, A., Olson, D.: Development and characterization of improved NiTiPd high-temperature shape-memory alloys by solid-solution strengthening and thermomechanical processing. In: SMST 2006: Proceedings of of the International Conference on Shape Memory and Superelastic Technologies, pp. 113–131 (2008a)

  • Bigelow, G.S., Gaydosh, D.J., Garg, A., Padula, S.A., Noebe, R.D.: Effects of stoichiometry on transformation temperatures and actuator-type performance of NiTiPd and NiTiPdX high-temperature shape memory alloys. In: SMST-2007: Proceedings of of the International Conference on Shape Memory and Superelastic Technologies, pp. 83–92 (2008b)

  • Bigelow, G.S., Padula, S.A., Garg, A., Noebe, R.D.: Correlation between mechanical behavior and actuator-type performance of Ni-Ti-Pd high-temperature shape memory alloys—art. no. 65262B. Proc. Soc. Photo-Optical Instrumentation, vol. 6526, B5262 (2007)

  • Bigelow, G.S.: Effects of Palladium Content, Quaternary Alloying, and Thermomechanical Processing on the Behavior of Ni-Ti-Pd Shape Memory Alloys for Actuator Applications. MS Thesis, Colorado School of Mines (2006)

  • Bigelow, G.S., Padula II, S.A., Garg, A., Gaydosh, D., Noebe, R.D.: Characterization of ternary NiTiPd high-temperature shape-memory alloys under load-biased thermal cycling. Metall. Mater. Trans. A 41(12), 3065–3079 (2010)

    Google Scholar 

  • Bigelow, G.S., Garg, A., Padula Ii, S.A., Gaydosh, D.J., Noebe, R.D.: Load-biased shape-memory and superelastic properties of a precipitation strengthened high-temperature Ni50.3Ti29.7Hf20 alloy. Scr. Mater. 64(8), 725–728 (2011)

    Google Scholar 

  • Bo, Z.H., Lagoudas, D.C.: Thermomechanical modeling of polycrystalline SMAs under cyclic loading, part III: evolution of plastic strains and two-way shape memory effect. Int. J. Eng. Sci. 37(9), 1175–1203 (1999)

    MATH  MathSciNet  Google Scholar 

  • Boyd, J.G., Lagoudas, D.C.: A thermodynamical constitutive model for shape memory materials. 2. The SMA composite material. Int. J. Plasticity 12(7), 843–873 (1996)

    MATH  Google Scholar 

  • Brinson, L.C.: One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J. Int. Mater. Syst. Struct. 4, 229–242 (1993)

    Google Scholar 

  • Brocca, M., Brinson, L.C., Bazant, Z.: Three-dimensional constitutive model for shape memory alloys based on microplane model. J. Mech. Phys. Solids 50(5), 1051–1077 (2002)

    MATH  Google Scholar 

  • Buehler, W.J., Wang, F.E.: A summary of recent research on the nitinol alloys and their potential application in ocean engineering. Ocean Eng. 1(1), 105–120 (1968)

    Google Scholar 

  • Burton, D.S., Gao, X., Brinson, L.C.: Finite element simulation of a self-healing shape memory alloy composite. Mech. Mater. 38(5–6), 525–537 (2006)

    Google Scholar 

  • Butera, F., Bianconi, E.: EP1031444—Control device with a shape memory actuating member heated by induction. Italy Patent (2000)

  • Calkins, F.T., Mabe, J.H.: Shape memory alloy based morphing chevrons: full scale static engine test. Paper No. AIAA-2007-3438. In: 13th AIAA/CEAS Aeroacoustics Conference, Rome, Italy (2007)

  • Calkins, F., Butler, G., Mabe, J.: Variable geometry chevrons for jet noise reduction, AIAA-2006-2546. In: 12th AIAA/CEAS Aeroacoustics Conference, Cambridge (2006)

  • Casati, R., Passaretti, F., Tuissi, A.: Effect of electrical heating conditions on functional fatigue of thin NiTi wire for shape memory actuators. Procedia Eng. 10, 3423–3428 (2011)

    Google Scholar 

  • Chan, C.W., Man, H.C.: Laser welding of thin foil nickel-titanium shape memory alloy. Opt. Laser. Eng. 49(1), 121–126 (2011)

    Google Scholar 

  • Chemisky, Y., Duval, A., Piotrowski, B., Ben-Zineb, T., Patoor, E.: numerical tool based on finite element method for SMA structures design. In: Smasis2008: Proceedings of the Asme Conference on Smart Materials, Adaptive Structures and Intelligent Systems—2008, vol. 1, pp. 411-419 (2009)

  • Chen, S., Craft, W.J., Song, D.Y.: Nonlinear adaptive control of dynamic systems driven by shape memory alloy (SMA) actuators. In: IMECE 2008: Mechanical Systems and Control, vol. 11, pp. 767–774 (2009)

  • CASMART-DWG: https://sites.google.com/site/casmartsmadesignwiki/home (2013)

  • CASMART-MWG. https://sites.google.com/site/smawiki/ (2013)

  • Coughlin, D.R., Phillips, P.J., Bigelow, G.S., Garg, A., Noebe, R.D., Mills, M.J.: Characterization of the microstructure and mechanical properties of a 50.3Ni-29.7Ti-20Hf shape memory alloy. Scr. Mater. 67(1), 112–115 (2012)

    Google Scholar 

  • Cross, W.B., Kariotis, A.H., Stimler, F.J.: Nitinol Characterization Study. In: NASA CR-1433 (1969)

  • Cui, D., Song, G.B., Li, H.N.: Modeling of the electrical resistance of shape memory alloy wires. Smart Mater. Struct. 19(5), 055019 (2010)

    Google Scholar 

  • Davis, B., Turner, T.L., Seelecke, S.: Measurement and prediction of the thermomechanical response of shape memory alloy hybrid composite beams. J. Int. Mater. Syst. Struct. 19(2), 129–143 (2008)

    Google Scholar 

  • DeCastro, J.A., Melcher, K.J., Noebe, R.D., Gaydosh, D.J.: Development of a numerical model for high-temperature shape memory alloys. Smart Mater. Struct. 16(6), 2080–2090 (2007)

    Google Scholar 

  • Dixon, J.R., Poli, C.: Engineering Design and Design for Manufacturing. Field Stone Publishers, Conway (1995)

    Google Scholar 

  • Dolce, M., Cardone, D.: Mechanical behaviour of shape memory alloys for seismic applications. 2. Austenite NiTi wires subjected to tension. Int. J. Mech. Sci. 43(11), 2657–2677 (2001)

    Google Scholar 

  • Dow Corning Corporation: Silane Coupling Agents, Form No. 95-719-01 (2009)

  • Droney, M., Kaiboussi, N., Lemanski, J., Rodriguez, C., Woodruff, T.: Senior Design Project Report: Shape Memory Alloy Thermal Switch. University of Central Florida, Orlando (2003)

    Google Scholar 

  • Duerig, T., Melton, K.: Wide Hysteresis NiTiNb Alloys. The Martensitic Transformation in Science and Technology. DGM Informationsgesellschaft, Oberursel (1989)

  • Duerig, T.W., Melton, K.N., Stoeckel, D., Wayman, C.M.: Engineering Aspects of Shape Memory Alloys. Butterworth-Heinemann, London (1990)

    Google Scholar 

  • Dynalloy, Inc.: Technical Characteristics of Flexinol Actuator Wires, Dynalloy Inc., Tustin (2011)

  • Eggeler, G., Hornbogen, E., Yawny, A., Heckmann, A., Wagner, M.: Structural and functional fatigue of NiTi shape memory alloys. Mater. Sci. Eng. A 378(1–2), 24–33 (2004)

    Google Scholar 

  • Eggert, R.J.: Engineering Design. Pearson Prentice Hall, Upper Saddle River (2005)

    Google Scholar 

  • Russell, S.M.: Nitinol melting and fabrication. In: Russell, S.M., Pelton, A.R. (eds.) SMST 2010: International Conference on Shape Memory and Superelastic Technologies, Pacific Grove, CA, USA, pp. 1–9 (2000)

  • Falvo, A., Furgiuele, F.M., Maletta, C.: Laser welding of a NiTi alloy: mechanical and shape memory behaviour. Mater. Sci. Eng. A 412(1–2), 235–240 (2005)

    Google Scholar 

  • Favier, D., Louche, H., Schlosser, P., Orgeas, L., Vacher, P., Debove, L.: Homogeneous and heterogeneous deformation mechanisms in an austenitic polycrystalline Ti-50.8 at.% Ni thin tube under tension. Investigation via temperature and strain fields measurements. Acta Mater. 55(16), 5310–5322 (2007)

    Google Scholar 

  • Figueiredo, A.M., Modenesi, P., Buono, V.: Low-cycle fatigue life of superelastic NiTi wires. Int. J. Fatigue 31(4), 751–758 (2009)

    Google Scholar 

  • Foroozmehr, A., Kermanpur, A., Ashrafizadeh, F., Kabiri, Y.: Effects of thermo-mechanical parameters on microstructure and mechanical properties of Ti-50 at.%Ni shape memory alloy produced by VAR method. Mater. Sci. Eng. A 535, 164–169 (2012)

    Google Scholar 

  • Frenzel, J., George, E.P., Dlouhy, A., Somsen, C., Wagner, M.F.X., Eggeler, G.: Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater. 58(9), 3444–3458 (2010)

    Google Scholar 

  • Frenzel, J., Burow, J.A., Payton, E.J., Rezanka, S., Eggeler, G.: Improvement of NiTi shape memory actuator performance through ultra-fine grained and nanocrystalline microstructures. Adv. Eng. Mater. 13(4), 256–268 (2011)

    Google Scholar 

  • Fukumoto, S., Inoue, T., Mizuno, S., Okita, K., Tomita, T., Yamamoto, A.: Friction welding of TiNi alloy to stainless steel using Ni interlayer. Sci. Technol. Weld. Join. 15(2), 124–130 (2010)

    Google Scholar 

  • Funakubo, H.: Shape Memory Alloys. Gordon and Breach, New York (1987)

    Google Scholar 

  • Furst, S.J., Seelecke, S.: Modeling and experimental characterization of the stress, strain, and resistance of shape memory alloy actuator wires with controlled power input. J. Int. Mater. Syst. Struct. 23(11), 1233–1247 (2012)

    Google Scholar 

  • Gall, K., Tyber, J., Wilkesanders, G., Robertson, S.W., Ritchie, R.O., Maier, H.J.: Effect of microstructure on the fatigue of hot-rolled and cold-drawn NiTi shape memory alloys. Mater. Sci. Eng. A 486(1–2), 389–403 (2008)

    Google Scholar 

  • Gao, X.J., Brinson, L.C.: SMA single crystal experiments and micromechanical modeling for complex thermomechanical loading. Smart Struct. Mater. 3992, 516–523 (2000)

    Google Scholar 

  • Gao, X., Brinson, L.C.: A simplified multivariant SMA model based on invariant plane nature of martensitic transformation. J. Int. Mater. Syst. Struct. 13(12), 795–810 (2002)

    Google Scholar 

  • Gao, X.: Multivariant Modeling and Characterization of SMAs Based on Hierarchical Characteristics of Martensite Crystallography. Northwestern University, Chicago (2002)

  • Gao, X.J., Huang, M.S., Brinson, L.C.: A multivariant micromechanical model for SMAs Part 1. Crystallographic issues for single crystal model. Int. J. Plasticity 16(10–11), 1345–1369 (2000)

    MATH  Google Scholar 

  • Gao, X., Brown, D.W., Brinson, L.C.: SMA texture and reorientation: simulations and neutron diffraction studies. In: Alison B. Flatau (ed.) Proceedings of SPIE. SPIE, San Diego, CA, pp. 715–726 (2005)

  • Gedouin, P.-A., Delaleau, E., Bourgeot, J.-M., Join, C., Arbab Chirani, S., Calloch, S.: Experimental comparison of classical PID and model-free control: position control of a shape memory alloy active spring. Control Eng. Pract. 19(5), 433–441 (2011)

    Google Scholar 

  • Gloanec, A.L., Cerracchio, P., Reynier, B., Van Herpen, A., Riberty, P.: Fatigue crack initiation and propagation of a TiNi shape memory alloy. Scr. Mater. 62(10), 786–789 (2010)

    Google Scholar 

  • Gollerthan, S., Young, M.L., Neuking, K., Ramamurty, U., Eggeler, G.: Direct physical evidence for the back-transformation of stress-induced martensite in the vicinity of cracks in pseudoelastic NiTi shape memory alloys. Acta Mater. 57(19), 5892–5897 (2009)

    Google Scholar 

  • Gravatt, L.M., Mabe, J.H., Calkins, F.T., Hartl, D.J.: Characterization of Varied Geometry Shape Memory Alloy Beams. Paper presented at the SPIE Smart Structures and Materials, San Francisco (2010)

  • Grossmann, C., Frenzel, J., Sampath, V., Depka, T., Oppenkowski, A., Somsen, C., Neuking, K., Theisen, W.: Processing and property assessment of NiTi and NiTiCu shape memory actuator springs. Materialwiss. Werkstofftech. 39(8), 499–510 (2008)

    Google Scholar 

  • Grummon, D.S., Shaw, J.A., Foltz, J.: Fabrication of cellular shape memory alloy materials by reactive eutectic brazing using niobium. Mater. Sci. Eng. A 438–440, 1113–1118 (2006)

    Google Scholar 

  • Gupta, K.: The Ni-Ti-Zr system (nickel-titanium-zirconium). J. Phase Equilib. 20(4), 441–448 (1999)

    Google Scholar 

  • Hartl, D.J. (2009): Modeling of Shape Memory Alloys Considering Rate-dependent Irrecoverable Strains. Texas A&M

  • Hartl, D., Zimmerman, T., Dilligan, M., Mabe, J., Calkins F.: Analysis of shape memory alloy components using beam, shell, and continuum finite elements. In: Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems, vol. 1, pp. 295–305 (2010a)

  • Hartl, D.J., Stebner, A.P., Chemisky, Y., Benafan, O., Brinson, L.C.: A framework for the unified calibration of 3D phenomenological shape memory alloy constitutive models. Smart Mater. Struct. submitted (ASME-SMASIS Special Issue) (2012)

  • Hartl, D.J., Lagoudas, D.C.: Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys. Smart Mater. Struct. 18(10), 104017 (2009)

    Google Scholar 

  • Hartl, D.J., Chatzigeorgiou, G., Lagoudas, D.C.: Three-dimensional modeling and numerical analysis of rate-dependent irrecoverable deformation in shape memory alloys. Int. J. Plasticity 26(10), 1485–1507 (2010a)

    MATH  Google Scholar 

  • Hartl, D.J., Lagoudas, D.C., Calkins, F.T., Mabe, J.H.: Use of a Ni60Ti shape memory alloy for active jet engine chevron application: I. Thermomechanical characterization. Smart Mater. Struct. 19, 015020 (2010b)

    Google Scholar 

  • Hartl, D.J., Mooney, J.T., Lagoudas, D.C., Calkins, F.T., Mabe, J.H.: Use of a Ni60Ti shape memory alloy for active jet engine chevron application: II. Experimentally validated numerical analysis. Smart Mater. Struct. 19(1), 015021 (2010c)

    Google Scholar 

  • Hartl, D.J., Lagoudas, D.C., Calkins, F.T.: Advanced methods for the analysis, design, and optimization of SMA-based aerostructures. Smart Mater. Struct. 20(9), 094006 (2011)

    Google Scholar 

  • Hassan, M.R., Scarpa, F., Mohamed, N.A., Ruzzene, M.: Tensile properties of shape memory alloy chiral honeycombs. Phys. Status Solidi (b) 245(11), 2440–2444 (2008)

    Google Scholar 

  • He, Y.J., Sun, Q.P.: Scaling relationship on macroscopic helical domains in NiTi tubes. Int. J. Solids Struct. 46(24), 4242–4251 (2009)

    MATH  Google Scholar 

  • Hearn, E.J.: Mechanics of Materials—An Introduction to the Mechanics of Elastic and Plastic Deformation of Solids and Structural Materials, 3rd ed., vol. 1. Elsevier, Amsterdam (1997)

  • Hirose, S., Ikuta, K., Umetani, Y.: Development of a shape memory alloy actuator. Improvement of output performance by the introduction of a s-mechanism. Adv. Robot. 3, 3–16 (1989)

    Google Scholar 

  • Hodgson, E.D.: Fabrication, Heat treatment and joining of nitinol components. In: Russell, S.M., Pelton, A. (eds.) Shape Memory and Superelastic Technologies (SMST), Pacific Grove, CA, pp. 11–24

  • Hsieh, S.F., Chen, S.L., Lin, H.C., Lin, M.H., Chiou, S.Y.: The machining characteristics and shape recovery ability of Ti-Ni-X (X = Zr, Cr) ternary shape memory alloys using the wire electro-discharge machining. Int. J. Mach. Tool. Manuf. 49(6), 509–514 (2009)

    Google Scholar 

  • Huang, M., Brinson, L.C.: Multivariant model for single crystal shape memory alloy behavior. J. Mech. Phys. Solids 46(8), 1379–1409 (1998)

    MATH  MathSciNet  Google Scholar 

  • Huang, M.S., Gao, X.J., Brinson, L.C.: A multivariant micromechanical model for SMAs. Part 2. Polycrystal model. Int. J. Plasticity 16(10–11), 1371–1390 (2000)

    Google Scholar 

  • Iadicola, M.A., Shaw, J.A.: An experimental setup for measuring unstable thermo-mechanical behavior of shape memory alloy wire. J. Int. Mater. Syst. Struct. 13(2–3), 157–166 (2002)

    Google Scholar 

  • Ipek Nakas, G., Dericioglu, A.F., Bor, S.: Fatigue behavior of TiNi foams processed by the magnesium space holder technique. J. Mech. Behav. Biomed. 4(8), 2017–2023 (2011)

    Google Scholar 

  • Jackson, C.M., Wagner, H.J., Wasilewski, R.J.: 55-Nitinol the alloy with a memory: its physical metallurgy, properties, and applications. In: NASA SP-5110 (1972)

  • Kelly, A., Bhattacharya, K.: A constitutive model for shape-memory alloys that accounts for initiation, reorientation, and saturation. J. Mech. Phys. Solids (submitted, 2012)

  • Khamei, A.A., Dehghani, K.: A study on the mechanical behavior and microstructural evolution of Ni60wt%Ti40wt% (60Nitinol) intermetallic compound during hot deformation. Mater. Chem. Phys. 123(1), 269–277 (2010)

    Google Scholar 

  • Kim, J.I., Miyazaki, S.: Effect of nano-scaled precipitates on shape memory behavior of Ti-50.9at.%Ni alloy. Acta Mater. 53(17), 4545–4554 (2005)

    Google Scholar 

  • Kohl, M., Dittmann, D., Quandt, E., Winzek, B., Miyazaki, S., Allen, D.M.: Shape memory microvalves based on thin films or rolled sheets. Mater. Sci. Eng. A 273–275, 784–788 (1999)

    Google Scholar 

  • Kong, M.C., Axinte, D., Voice, W.: Challenges in using waterjet machining of NiTi shape memory alloys: an analysis of controlled-depth milling. J. Mater. Process. Technol. 211(6), 959–971 (2011)

    Google Scholar 

  • Kovarik, L., Yang, F., Garg, A., Diercks, D., Kaufman, M., Noebe, R.D., Mills, M.J.: Structural analysis of a new precipitate phase in high-temperature TiNiPt shape memory alloys. Acta Mater. 58(14), 4660–4673 (2010)

    Google Scholar 

  • Krishnan, V.B., Bewerse, C., Notardonato, W.U., Vaidyanathan, R.: A thermal conduction switch based on low hysteresis NiTiFe shape memory alloy helical springs. AIP Conf. Proc. 986(1), 3–9 (2008a)

    Google Scholar 

  • Krishnan, V.B., Manjeri, R.M., Clausen, B., Brown, D.W., Vaidyanathan, R.: Analysis of neutron diffraction spectra acquired in situ during mechanical loading of shape memory NiTiFe at low temperatures. Mater. Sci. Eng. A 481–482, 3–10 (2008b)

    Google Scholar 

  • Lagoudas, D.: Shape memory alloys : modeling and engineering applications, 1st edn. Springer, New York (2008)

    Google Scholar 

  • Lagoudas, D.C., Entchev, P.B., Popov, P., Patoor, E., Brinson, L.C., Gao, X.J.: Shape memory alloys, part II: modeling of polycrystals. Mech. Mater. 38(5–6), 430–462 (2006)

    Google Scholar 

  • Lagoudas, D.C., Miller, D.A., Rong, L., Kumar, P.K.: Thermomechanical fatigue of shape memory alloys. Smart Mater. Struct. 18(8), 085021 (2009)

    Google Scholar 

  • Langbein, S.: Development of standardised and integrated shape memory components in “one-module”—design. In: ESOMAT 2009—8th European Symposium on Martensitic Transformations (2009)

  • Lemanski, J.L., Krishnan, V.B., Manjeri, R.M., Notardonato, W.U., Vaidyanathan, R.: A low hysteresis NiTiFe shape memory alloy based thermal conduction switch. Adv. Cryog. Eng. 52(1), 3–10 (2006)

    Google Scholar 

  • Lexcellent, C., Bourbon, G.: Thermodynamical model of cyclic behaviour of Ti-Ni and Cu-Zn-Al shape memory alloys under isothermal undulated tensile tests. Mech. Mater. 24(1), 59–73 (1996)

    Google Scholar 

  • Li, M.G., Sun, D.Q., Qiu, X.M., Liu, J.B., Miao, K., Wu, W.C.: Effects of silver based filler metals on microstructure and properties of laser brazed joints between TiNi shape memory alloy and stainless steel. Sci. Technol. Weld. Join. 12(2), 183–188 (2007)

    Google Scholar 

  • Li, H., Yuan, B., Gao, Y., Chung, C.Y., Zhu, M.: High-porosity NiTi superelastic alloys fabricated by low-pressure sintering using titanium hydride as pore-forming agent. J. Mater. Sci. 44(3), 875–881 (2009)

    Google Scholar 

  • Li, H.M., Sun, D.Q., Cai, X.L., Dong, P., Wang, W.Q.: Laser welding of TiNi shape memory alloy and stainless steel using Ni interlayer. Mater. Des. 39, 285–293 (2012)

    Google Scholar 

  • Li, H., Sun, D., Cai, X., Dong, P., Gu, X.: Laser welding of TiNi shape memory alloy and stainless steel using Co filler metal. Opt. Laser Technol. 45, 453–460 (2013)

    Google Scholar 

  • Ma, N., Song, G.: Control of shape memory alloy actuator using pulse width (PW) modulation. In: Proc. Soc. Photo-Opt. Ins.: Smart Structures and Materials 2002: Modeling, Signal Processing, and Control, vol. 4693, pp. 348–359 (2002)

  • Ma, N., Song, G.: Control of shape memory alloy actuator using pulse width modulation. Smart Mater. Struct. 12(5), 712–719 (2003)

    MathSciNet  Google Scholar 

  • Ma, N., Song, G., Lee, H.J.: Position control of shape memory alloy actuators with internal electrical resistance feedback using neural networks. Smart Mater. Struct. 13(4), 777–783 (2004)

    Google Scholar 

  • Ma, J., Karaman, I., Noebe, R.D.: High temperature shape memory alloys. Int. Mater. Rev. 55, 257–315 (2010)

    Google Scholar 

  • Mabe, J.H., Calkins, F.T., Butler, G.W.: Boeing’s variable geometry chevron: morphing aerostructure for jet noise reduction, AIAA-2006-2142. In: 47th AIAA Adaptive Structures Conference Newport, RI (2006b)

  • Mabe, J., Ruggeri, R., Calkins, F.: Characterization of Nickel-Rich Nitinol Alloys for Actuator Development. In: SMST-2006: Proc. of the International Conference on Shape Memory and Superelastic Technologies, Pacific Grove, CA (2006a)

  • Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium. Prentice-Hall Series in Engineering of the Physical Sciences. Prentice-Hall, Englewood Cliffs (1969)

    Google Scholar 

  • Man, H.C., Zhao, N.Q.: Enhancing the adhesive bonding strength of NiTi shape memory alloys by laser gas nitriding and selective etching. Appl. Surf. Sci. 253(3), 1595–1600 (2006)

    Google Scholar 

  • Manjeri, R.M.: Low temperature and reduced length scale behavior of shape memory and superelastic NiTi and NiTiFe alloys. Ph.D. Dissertation, University of Central Florida (2009)

  • Martins, D., Ribeiro, L., Lopes, D., Catarino, I., Esteves, I.A.A.C., Mota, J.P.B., Bonfait, G.: Sorption characterization and actuation of a gas-gap heat switch. Sens. Actuators A 171(2), 324–331 (2011)

    Google Scholar 

  • Mavroidis, C.: Development of advanced actuators using shape memory alloys and electrorheological fluids. Res. Nondestr. Eval. 14(1), 1–32 (2002)

    Google Scholar 

  • Maynard, M. (2008): To Save Fuel, Airlines Find No Speck Too Small. In: New York Times. NY, NY

  • Maziarz, W.: Structure changes of Co-Ni-Al ferromagnetic shape memory alloys after vacuum annealing and hot rolling. J. Alloy Compd. 448(1–2), 223–226 (2008)

    Google Scholar 

  • Mecham, M.: Smooth Start to GTF flight testing. In: Aviation Week and Space Technology, vol. 175, p. 40 (2011)

  • Mehrabi, K., Bruncko, M., Kneissl, A.C.: Microstructure, mechanical and functional properties of NiTi-based shape memory ribbons. J. Alloy. Compd. 526, 45–52 (2012)

    Google Scholar 

  • MigaMotors: http://www.migamotors.com (2012)

  • Mirzaeifar, R., DesRoches, R., Yavari, A.: A combined analytical, numerical, and experimental study of shape-memory-alloy helical springs. Int. J. Solids Struct. 48(3–4), 611–624 (2011)

    MATH  Google Scholar 

  • Mohammad, T., Jeng-Jong, R., Chuh, M.: Thermal post-buckling and aeroelastic behaviour of shape memory alloy reinforced plates. Smart Mater. Struct. 11(2), 297 (2002)

    Google Scholar 

  • Morin, C., Moumni, Z., Zaki, W.: Direct numerical determination of the asymptotic cyclic behavior of pseudoelastic shape memory structures. J. Eng. Mech. ASCE 137(7), 497–503 (2011a)

    Google Scholar 

  • Morin, C., Moumni, Z., Zaki, W.: Thermomechanical coupling in shape memory alloys under cyclic loadings: experimental analysis and constitutive modeling. Int. J. Plasticity 27(12), 1959–1980 (2011b)

    MATH  Google Scholar 

  • Neurohr, A.J., Dunand, D.C.: Mechanical anisotropy of shape-memory NiTi with two-dimensional networks of micro-channels. Acta Mater. 59(11), 4616–4630 (2011)

    Google Scholar 

  • Nishida, M., Wayman, C., Honma, T.: Precipitation processes in near-equiatomic TiNi shape memory alloys. Metall. Mater. Trans. A 17(9), 1505–1515 (1986)

    Google Scholar 

  • Noebe, R., Draper, S., Gaydosh, D., Garg, A., Lerch, B., Penney, N., Bigelow, G., Padula, S., Brown, J.: Effect of thermomechanical processing on the microstructure, properties, and work behavior of a Ti(50.5)Ni(29.5)Pt(20) high-temperature shape memory alloy. In: SMST 2006: Proceedings of the International Conference on Shape Memory and Superelastic Technologies, 409-426 (2008)

  • Noebe, R., Gaydosh, D., Padula, S., Garg, A., Biles, T., Nathal, M.: Properties and potential of two (Ni,Pt)Ti alloys for use as high-temperature actuator materials. In: Proc. Soc. Photo-Opt. Ins.: Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics, vol. 5761, pp. 364–375 (2005)

  • Noebe, R., Padula, S., Bigelowo, G., Rios, O., Garg, A., Lercf, B.: Properties of a Ni(19.5)Pd(30)Ti(50.5)high-temperature shape memory alloy in tension and compression—art. no. 617010. In: Proc. Soc. Photo-Opt. Ins.: Smart Structures and Materials 2006: Active Materials: Behavior and Mechanics, vol. 6170, p. 17010 (2006)

  • Novak, V., Sittner, P., Dayananda, G.N., Braz-Fernandes, F.M., Mahesh, K.K.: Electric resistance variation of NiTi shape memory alloy wires in thermomechanical tests: Experiments and simulation. Mater. Sci. Eng. A 481–482, 127–133 (2008)

    Google Scholar 

  • Oehler, S.D., Hartl, D.J., Turner, T.L., Lagoudas, D.C.: Modeling fluid structure interaction with shape memory alloy actuated morphing aerostructures. In: Proc. Soc. Photo-Opt. Ins.: Industrial and Commercial Applications of Smart Structures Technologies, vol. 8343 (2012b)

  • Oehler, S.D., Hartl, D.J., Lopez, R., Malak, R.J., Lagoudas, D.C.: Design optimization and uncertainty analysis of SMA morphing structures. Smart Mater. Struct. 21(9), 094016 (2012)

    Google Scholar 

  • Olsen, J.S., Zhang, Z.L., Lu, H., van der Eijk, C.: Fracture of notched round-bar NiTi-specimens. Eng. Fract. Mech. 84, 1–14 (2012)

    Google Scholar 

  • Olson, G.B., Cohen, M.: Mechanism for strain-induced nucleation of martensitic transformations. J. Less-Common Met. 28(1), 107 (1972)

    Google Scholar 

  • Olson, G.B., Owen, W.S.: Martensite : A Tribute to Morris Cohen. ASM International, Materials Park (1992)

    Google Scholar 

  • Otsuka, K., Ren, X.: Recent developments in the research of shape memory alloys. Intermetallics 7(5), 511–528 (1999)

    Google Scholar 

  • Otsuka, K., Ren, X.: Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater Sci. 50, 511–678 (2005)

    Google Scholar 

  • Otsuka, K., Wayman, C.M.: Shape Memory Materials. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  • Otsuka, K., Wayman, C.M.: Shape Memory Materials. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  • Padula II, S.A., Noebe, R., Bigelow, G., Culley, D., Stevens, M., Penney, N., Gaydosh, D., Quackenbush, T., Carpenter, B.: Development of a HTSMA-actuated surge control rod for high-temperature turbomachinery applications. Paper presented at the AIAA adaptive structures conference, Waikiki (2007)

  • Padula, S., Bigelow, G., Noebe, R., Gaydosh, D., Garg, A.: Challenges and progress in the development of high-temperature shape memory alloys based on nitix compositions for high-force actuator applications. In: SMST 2006: Proceedings of the International Conference on Shape Memory and Superelastic Technologies, pp. 787–801 (2008)

  • Padula II, S., Qiu, S., Gaydosh, D., Noebe, R., Bigelow, G., Garg, A., Vaidyanathan, R.: Effect of upper-cycle temperature on the load-biased, strain-temperature response of NiTi. Metall. Mater. Trans. 43A, 4610 (2012)

    Google Scholar 

  • Panico, M., Brinson, L.C.: A three-dimensional phenomenological model for martensite reorientation in shape memory alloys. J. Mech. Phys. Solids 55(11), 2491–2511 (2007)

    MATH  MathSciNet  Google Scholar 

  • Panico, M., Brinson, L.C.: Computational modeling of porous shape memory alloys. Int. J. Solids Struct. 45(21), 5613–5626 (2008)

    MATH  Google Scholar 

  • Patel, M.M., Gordon, R.F.: An investigation of diverse surface finishes on fatigue properties of superelastic nitinol wire. In: SMST 2006: Proceedings of the International Conference on Shape Memory and Superelastic Technologies, Pacific Grove, CA (2006)

  • Patoor, E., Bensalah, M.O., Eberhardt, A., Berveiller, M.: Micromechanical aspects of the shape memory behaviour. In: Proceedings of the International Conference on Martensitic Transformations (ICOMAT-92), pp. 401–406 (1993)

  • Patoor, E., Eberhardt, A., Berveiller, M.: Micromechanical modelling of the shape memory behavior. In: Brinson, L.C., Moran, B. (eds.) Mechanics of Phase Transformation and Shape Memory Alloys 1994, pp. 23–27. ASME, New York (1994)

  • Patoor, E., Lagoudas, D.C., Entchev, P.B., Brinson, L.C., Gao, X.J.: Shape memory alloys, part I: general properties and modeling of single crystals. Mech. Mater. 38(5–6), 391–429 (2006)

    Google Scholar 

  • Pourkhorshidi, S., Parvin, N., Kenevisi, M.S., Naeimi, M., Ebrahimnia Khaniki, H.: A study on the microstructure and properties of Cu-based shape memory alloy produced by hot extrusion of mechanically alloyed powders. Mater. Sci. Eng. A 556, 658–663 (2012)

    Google Scholar 

  • Qiu, S., Krishnan, V.B., Padula II, S.A., Noebe, R.D., Brown, D.W., Clausen, B., Vaidyanathan, R.: Measurement of the lattice plane strain and phase fraction evolution during heating and cooling in shape memory NiTi. Appl. Phys. Lett. 95(14), 141906 (2009)

  • Qiu, S., Clausen, B., Padula II, S.A., Noebe, R.D., Vaidyanathan, R.: On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi. Acta Mater. 59, 5055–5066 (2011)

    Google Scholar 

  • Redmond, J.A., Brei, D., Luntz, J., Browne, A.L., Johnson, N.L.: Behavioral model and experimental validation for a spool-packaged shape memory alloy actuator. In: Proc. Soc. Photo-Opt. Ins.: Industrial and Commercial Applications of Smart Structures Technologies, San Diego, CA, pp. 693004–693013 (2008b)

  • Redmond, J.A., Brei, D., Luntz, J., Browne, A.L., Johnson, N.L.: Behavioral model and experimental validation for a spool-packaged shape memory alloy actuator—art. no. 693004. In: Proc. Soc. Photo-Opt. Ins.: Industrial and Commercial Applications of Smart Structures Technologies 2008, vol. 6930, p. 93004 (2008a)

  • Reedlunn, B., Shaw, J., Daly, S.: Vol. 1 of active materials, M.a.B.-h.M., simulation and control: shape memory alloy cables: exploratory experiments. In: Proceedings of the ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS 2009), Oxnard, CA, pp. 149–160 (2009)

  • Reedlunn, B., Shaw, J.: Shape memory alloy cables. In: Dapino, M.J., Ounaies, Z. (eds.) Proceedings of the SPIE 15th Annual International Symposium in Smart Structures and Materials, San Diego, CA, p. 69291G (2008)

  • Reedlunn, B., Shaw, J., Daly, S.: Pseudoelastic shape memory alloy cables. In: Grummon, D.S., Mitchell, M.R., Mertmann, M. (eds.) SMST 2010: Proceedings of the International Conference on Shape Memory and Superelastic Technologies, Pacific Grove, CA. New York: Springer (2010)

  • Resnina, N., Belayev, S., Voronkov, A.: Influence of chemical composition and pre-heating temperature on the structure and martensitic transformation in porous TiNi-based shape memory alloys, produced by self-propagating high-temperature synthesis. Intermetallics 32, 81–89 (2013)

    Google Scholar 

  • Sadjadpour, A., Bhattacharya, K.: A micromechanics-inspired constitutive model for shape-memory alloys. Smart Mater. Struct. 16(5), 1751–1765 (2007)

    Google Scholar 

  • Saleeb, A.F., Padula, S.A., Kumar, A.: A multi-axial, multimechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermomechanical loading conditions. Int. J. Plasticity 27(5), 655–687 (2011)

    MATH  Google Scholar 

  • Savi, M.A., Pacheco, P.M.C.L., Braga, A.M.B.: Chaos in a shape memory two-bar truss. Int. J. Nonlinear Mech. 37(8), 1387–1395 (2002)

    MATH  Google Scholar 

  • Schaffer, J.E., Plumley, D.L.: Fatigue performance of nitinol round wire with varying cold work reductions. J. Mater. Eng. Perform. 18(5–6), 563 (2009)

    Google Scholar 

  • Seelecke, S.: Modeling the dynamic behavior of shape memory alloys. Int. J. Nonlinear Mech. 37(8), 1363–1374 (2002)

    MATH  Google Scholar 

  • Sever, K., Sarikanat, M., Seki, Y., Tavman, I.H.: Concentration effect of γ-glycidoxypropyltrimethoxysilane on the mechanical properties of glass fiber–epoxy composites. Polym. Compos. 30(9), 1251–1257 (2009)

    Google Scholar 

  • Shaw, J.A.: Simulations of localized thermo-mechanical behavior in a NiTi shape memory alloy. Int. J. Plasticity 16(5), 541–562 (2000)

    MATH  Google Scholar 

  • Shaw, J.A., Kyriakides, S.: Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension. Int. J. Plasticity 13(10), 837–871 (1997a)

    Google Scholar 

  • Shaw, J.A., Kyriakides, S.: On the nucleation and propagation of phase transformation fronts in a NiTi alloy. Acta Mater. 45(2), 683–700 (1997b)

    Google Scholar 

  • Shiue, R.H., Wu, S.K.: Infrared brazing of Ti50Ni50 shape memory alloy using two Ag-Cu-Ti active braze alloys. Intermetallics 14(6), 630–638 (2006)

    Google Scholar 

  • Smith, S.A., Hodgson, E.D.: Shape setting nitinol. In: Shrivastava, S. (ed.) Materials and Processes for Medical Devices Conference, Anaheim, CA, pp. 266–270 (2004)

  • Smith, N.A., Antoun, G.G., Ellis, A.B., Crone, W.C.: Improved adhesion between nickel-titanium shape memory alloy and a polymer matrix via silane coupling agents. Compos A Appl. Sci. 35(11), 1307–1312 (2004)

    Google Scholar 

  • Somsen, C., Zähres, H., Kästner, J., Wassermann, E.F., Kakeshita, T., Saburi, T.: Influence of thermal annealing on the martensitic transitions in Ni-Ti shape memory alloys. Mater. Sci. Eng. A 273–275, 310–314 (1999)

    Google Scholar 

  • Song, G.: Robust position regulation of a shape memory alloy wire actuator. Proc. Inst. Mech. Eng. I 216(I3), 301–308 (2002)

    Google Scholar 

  • Song, G., Chaudhry, V., Batur, C.: A new approach to the precision tracking control of shape-memory alloy actuators using neural networks and a sliding-mode based robust controller. In: Mater. Sci. Forum: Shape Memory Materials and Its Applications, vol. 394-3, pp. 83–86 (2001)

  • Song, G.: Robust position regulation of a rotary servo actuated by a shape memory alloy wire. In: ISIE 2001. IEEE International Symposium on Industrial Electronics Proceedings, pp. 1923–1928 (2001a)

  • Song, G.: Robust position regulation of a rotary servo actuated by a shape memory alloy wire. In: ISIE 2001: IEEE International Symposium on Industrial Electronics Proceedings, vols. I–III, pp. 1923–1928 (2001b)

  • Song, G.B., Kelly, B., Agrawal, B.N.: Active position control of a shape memory alloy wire actuated composite beam. In: Proc. Soc. Photo-Opt. Ins.: Smart Structures and Materials 1999: Mathematics and Control in Smart Structures, vol. 3667, pp. 755–766 (1999)

  • Song, G., Ma, N.: Control of shape memory alloy actuators using Pulse-Width Pulse-Frequency (PWPF) modulation. J. Int. Mater. Syst. Struct. 14(1), 15–22 (2003)

    Google Scholar 

  • Song, G.B., Ma, N.: Robust control of a shape memory alloy wire actuated flap. Smart Mater. Struct. 16(6), N51–N57 (2007)

    Google Scholar 

  • Song, G., Quinn, D.D.: Experimental study of the robust tracking control of a shape memory alloy wire actuator. J. Dyn. Syst. 126(3), 674–677 (2004)

    Google Scholar 

  • Song, G.B., Kelly, B., Agrawal, B.N.: Active position control of a shape memory alloy wire actuated composite beam. Smart Mater. Struct. 9(5), 711–716 (2000)

    Google Scholar 

  • Song, G., Chaudhry, V., Batur, C.: A neural network inverse model for a shape memory alloy wire actuator. J. Int. Mater. Syst. Struct. 14(6), 371–377 (2003a)

    Google Scholar 

  • Song, G., Chaudhry, V., Batur, C.: Precision tracking control of shape memory alloy actuators using neural networks and a sliding-mode based robust controller. Smart Mater. Struct. 12(2), 223–231 (2003b)

    Google Scholar 

  • Song, G.B., Ma, N., Li, L.Y., Penney, N., Barr, T., Lee, H.J., Arnold, S.: Design and control of a proof-of-concept active jet engine intake using shape memory alloy actuators. Smart Struct. Syst. 7(1), 1–13 (2011)

    Google Scholar 

  • Stebner, A.P.: Development, Characterization, and Application of NiTiPdPt High-Temperature Shape Memory Alloy Helical Actuators. The University of Akron, Akron (2007)

  • Stebner, A.P., Brinson, L.C.: Algorithms for explicit finite element implementation of a numerically improved three dimensional constitutive model for shape memory alloys. Comput. Methods Appl. Mech. Eng. 257, 17–35 (2013)

    MathSciNet  Google Scholar 

  • Stebner, A., Padula, S.A., Noebe, R.D., Quinn, D.D. (2008): Characterization of Ni19.5Ti50.5Pd25Pt5 high-temperature shape memory alloy springs and their potential application in aeronautics—art. no. 69280X. In: Proc. Soc. Photo-Opt. Ins.: Active and Passive Smart Structures and Integrated Systems, vol. 6928

  • Stebner, A., Padula, S., Noebe, R., Lerch, B., Quinn, D.: Development, characterization, and design considerations of Ni19.5Ti50.5Pd25Pt5 high-temperature shape memory alloy helical actuators. J. Int. Mater. Syst. Struct. 20(17), 2107–2126 (2009)

    Google Scholar 

  • Stebner, A., Gao, X., Brown, D.W., Brinson, L.C.: Neutron diffraction studies and multivariant simulations of shape memory alloys: empirical texture development—mechanical response relations of martensitic nickel-titanium. Acta Mater. 59(7), 2841–2849 (2011)

    Google Scholar 

  • Stebner, A.P.: Ph.D. Dissertation, Northwestern University (2012)

  • Stebner, A.P., Brown, D.W., Brinson, L.C.: Young’s modulus evolution and texture-based elastic-inelastic strain partitioning during large uniaxial deformations of monoclinic nickel-titanium. Acta Mater. 61(6), 1944–1956 (2013)

    Google Scholar 

  • Sun, Q.P., Hwang, K.C.: Micromechanics modeling for the constitutive behavior of polycrystalline shape memory alloys. 1. Derivation of general relations. J. Mech. Phys. Solids 41(1), 1–17 (1993)

    MATH  Google Scholar 

  • Sun, L., Zhao, Y., Huang, W.M., Tong, T.H.: Formation of combined surface features of protrusion array and wrinkles atop shape-memory polymer. Surf. Rev. Lett. 16(06), 929–933 (2009)

    Google Scholar 

  • Sun, L., Huang, W.M., Ding, Z., Zhao, Y., Wang, C.C., Purnawali, H., Tang, C.: Stimulus-responsive shape memory materials: a review. Mater. Des. 33, 577–640 (2012)

    Google Scholar 

  • Tanaka, K., Iwasaki, R.: A phenomenological theory of transformation superplasticity. Eng. Fract. Mech. 21(4), 709–720 (1985)

    Google Scholar 

  • Telezygology: http://www.tz.net (2012)

  • Thamburaja, P.: Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys. J. Mech. Phys. Solids 53(4), 825–856 (2005)

    MATH  MathSciNet  Google Scholar 

  • Thamburaja, P., Anand, L.: Polycrystalline shape-memory materials: effect of crystallographic texture. J. Mech. Phys. Solids 49(4), 709–737 (2001)

    MATH  Google Scholar 

  • Theisen, W., Schuermann, A.: Electro discharge machining of nickel-titanium shape memory alloys. Mater. Sci. Eng. A 378(1–2), 200–204 (2004)

    Google Scholar 

  • Tobushi, H., Hachisuka, T., Yamada, S., Lin, P.-H.: Rotating-bending fatigue of a TiNi shape-memory alloy wire. Mech. Mater. 26(1), 35–42 (1997)

    Google Scholar 

  • Turner, T.L.: Dynamic response tuning of composite beams by embedded shape memory alloy actuators. Smart Struct. Mater. 3991, 377–388 (2000a)

    Google Scholar 

  • Turner, T.L.: A new thermoelastic model for analysis of shape memory alloy hybrid composites. J. Int. Mater. Syst. Struct. 11(5), 382–394 (2000b)

    Google Scholar 

  • Turner, T.L. (2001): Thermomechanical Response of Shape Memory Alloy Hybrid Composites NASA/TM-2001-210656

  • Turner, T.L.: SMA hybrid composites for dynamic response abatement applications. J. Vib. Acoust. 127(3), 273–279 (2005)

    Google Scholar 

  • Turner, T.L., Patel, H.D.: Analysis of SMA hybrid composite structures in MSC.Nastran and Abaqus. J. Int. Mater. Syst. Struct. 18, 435–447 (2007)

    Google Scholar 

  • Turner, T.L., Patel, H.D.: Input Files and Procedures for Analysis of SMA Hybrid Composite Beams in MSC.Nastran and Abaqus. NASA/TM-2005-213517 (January 2005)

  • Turner, T.L., Buehrle, R.D., Cano, R.J., Fleming, G.A.: Modeling, fabrication, and testing of a SMA hybrid composite jet engine chevron concept. J. Int. Mater. Syst. Struct. 17(6), 483–497 (2006)

    Google Scholar 

  • Turner, T.L., Cabell, R.H., Cano, R.J., Silcox, R.J.: Development of a preliminary model-scale adaptive jet engine chevron. AIAA J. 46(10), 2545–2557 (2008)

    Google Scholar 

  • Wagner, M., Sawaguchi, T., Kaustrater, G., Hoffken, D., Eggeler, G.: Structural fatigue of pseudoelastic NiTi shape memory wires. Mater. Sci. Eng. A 378(1–2), 105–109 (2004)

    Google Scholar 

  • Wahl, A.M.: Mechanical Springs. McGraw-Hill, New York (1963)

    Google Scholar 

  • Weinert, K., Petzoldt, V.: Machining of NiTi based shape memory alloys. Mater. Sci. Eng. A 378(1–2), 180–184 (2004)

    Google Scholar 

  • Weinert, K., Petzoldt, V., Kötter, D.: Turning and drilling of NiTi shape memory alloys. CIRP Ann. Manuf. Technol. 53(1), 65–68 (2004)

    Google Scholar 

  • Wessels, M., Hekman, E., Verkerke, B.: Influence of prestrain, heat treatment and surface treatment on bending fatigue of NiTi rod. J. Biomech. 45(Suppl 1), 54 (2012)

    Google Scholar 

  • Williams, E.A., Shaw, G., Elahinia, M.: Control of an automotive shape memory alloy mirror actuator. Mechatronics 20(5), 527–534 (2010)

    Google Scholar 

  • Wojcik, C.: Properties and heat treatment of high transition temperature Ni-Ti-Hf alloys. J. Mater. Eng. Perform. 18(5), 511–516 (2009)

    Google Scholar 

  • Wojcik, C.: Shape memory properties of nickel rich Ni-Ti alloys. In: Pelton, A., Hodgson, R., Duerig, T. (eds.) SMST 2003: International Conference on Shape Memory and Superelastic Technologies, pp. 43–52 (2003)

  • Wu, M.H.: Fabrication of nitinol materials and components. Mater. Sci. Forum 394–395, 285–292 (2002)

    Google Scholar 

  • Wu, K., Ma, J.L.: A review of high-temperature shape memory alloys. In: Russell, S.M., Pelton, A.R. (eds.) SMST 2000: International Conference on Shape Memory and Superelastic Technologies, Pacific Grove, CA, USA 2000, pp. 153–161 (2000)

  • Wu, S.K., Lin, H.C., Yen, Y.C., Chen, J.C.: Wire drawing conducted in the R-phase of TiNi shape memory alloys. Mater. Lett. 46(2–3), 175–180 (2000)

    Google Scholar 

  • Yamauchi, K., Ohkata, I., Tsuchiya, K., Miyazaki, S.: Shape Memory and Superelastic Alloys: Technologies and Applications. Woodhead Publications, Cambridge (2011)

    Google Scholar 

  • Yan, X., Yang, D., Liu, X.: Electrochemical behavior of YAG laser-welded NiTi shape memory alloy. Trans. Nonferrous Met. Soc. 16(3), 572–576 (2006)

    MathSciNet  Google Scholar 

  • Young, M., Wagner, M.-X., Frenzel, J., Schmahl, W., Eggeler, G.: Phase volume fractions and strain measurements in an ultrafine-grained NiTi shape-memory alloy during tensile loading. Acta Mater. 58, 2344–2354 (2010)

    Google Scholar 

  • Young, M.L., DeFouw, J.D., Frenzel, J., Dunand, D.C.: Cast-replicated NiTiCu foams with superelastic properties. Metall. Mater. Trans. A 43(8), 2939–2944 (2012)

    Google Scholar 

  • Zarnetta, R., Takahashi, R., Young, M.L., Savan, A., Furuya, Y., Thienhaus, S., Maaß, B., Rahim, M., Frenzel, J., Brunken, H., Chu, Y.S., Srivastava, V., James, R.D., Takeuchi, I., Eggeler, G., Ludwig, A.: Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability. Adv. Funct. Mater. 20(12), 1917–1923 (2010)

    Google Scholar 

  • Zhang, Y., Jiang, S., Hu, L., Liang, Y.: Deformation mechanism of NiTi shape memory alloy subjected to severe plastic deformation at low temperature. Mater. Sci. Eng. A 559, 607–614 (2013)

    Google Scholar 

  • Zurbitu, J., Santamarta, R., Picornell, C., Gan, W.M., Brokmeier, H.G., Aurrekoetxea, J.: Impact fatigue behavior of superelastic NiTi shape memory alloy wires. Mater. Sci. Eng. A 528(2), 764–769 (2010)

    Google Scholar 

Download references

Acknowledgments

This work documents many years of effort from multiple organizations, encompassing support from numerous programs and funding agencies, and we thank them all. We also acknowledge CASMART’s member institutions for their support of our consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Benafan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benafan, O., Brown, J., Calkins, F.T. et al. Shape memory alloy actuator design: CASMART collaborative best practices and case studies. Int J Mech Mater Des 10, 1–42 (2014). https://doi.org/10.1007/s10999-013-9227-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-013-9227-9

Keywords

Navigation