Skip to main content
Log in

Active constrained layer damping of geometrically nonlinear vibrations of smart laminated composite sandwich plates using 1–3 piezoelectric composites

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

This paper deals with the analysis of active constrained layer damping (ACLD) of geometrically nonlinear vibrations of sandwich plate with orthotropic laminated composite faces separated by a flexible core. The constraining layer of the ACLD treatment is composed of the vertically/obliquely reinforced 1–3 piezoelectric composites. The Golla–Hughes–McTavish method has been implemented to model the constrained viscoelastic layer of the ACLD treatment in time domain. The first-order shear deformation theory and the Von Kármán type nonlinear strain displacement relations are used for analyzing this coupled electro-elastic problem. A three dimensional finite element model of smart laminated composite sandwich plate integrated with ACLD patches has been developed to investigate the performance of these patches for controlling the geometrically nonlinear vibrations of the plates. The numerical results indicate that the ACLD patches significantly improve the damping characteristics of the sandwich plates with laminated cross-ply and angle-ply facings for suppressing their geometrically nonlinear vibrations. Particular emphasis has been placed on investigating the effect of the variation of piezoelectric fiber orientation angle on the performance of the ACLD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Aboudi, J.: Micromechanical prediction of the effective coefficients of thermo-piezoelectric multiphase composites. J. Intell. Mater. Syst. Struct. 9, 713–722 (1998)

    Article  Google Scholar 

  • Altenbach, H., Altenbach, J., Kissing, W.: Mechanics of composite structural elements. Springer, Berlin/Heidelberg (2004)

    Google Scholar 

  • Arafa, M., Baz, A.: Dynamics of active piezoelectric damping composites. Compos. Part B 31, 255–264 (2000)

    Article  Google Scholar 

  • Bailey, T., Hubbard, J.E.: Distributed piezoelectric polymer active vibration control of a cantilever beam. J. Guid. Control Dyn. 8, 605–611 (1985)

    Article  MATH  Google Scholar 

  • Baz, A.: Active constrained layer damping. U.S. Patent 5,485,053 (1996)

  • Baz, A., Poh, S.: Performance of an active control system with piezoelectric actuators. J. Sound Vib. 126, 327–343 (1988)

    Article  Google Scholar 

  • Burlayenko, V., Sadowski, T.: Analysis of structural performance of aluminum sandwich plater with foam-filled hexagonal honeycomb core. Comput. Mater. Sci. 45, 658–662 (2009)

    Article  Google Scholar 

  • Dunn, M.L., Taya, M.: Micromechanics predictions of the effective electro elastic modulli of piezoelectric composites. Int. J. Solids Struct. 30, 161–175 (1993)

    Article  MATH  Google Scholar 

  • Ganapathi, M., Varadan, T.K., Sarma, B.S.: Nonlinear flexural vibrations of laminated orthotropic plates. Comput. Struct. 39, 685–688 (1991)

    Article  Google Scholar 

  • Gao, J.X., Shen, Y.P.: Active control of geometrically nonlinear transient vibration of composite plates with piezoelectric actuators. J. Sound Vib. 264, 911–928 (2003)

    Article  MATH  Google Scholar 

  • Ghosh, K., Batra, R.C.: Shape control of plates using piezoceramic elements. AIAA J. 33(7), 1354–1357 (1995)

    Article  Google Scholar 

  • Kant, T., Kommineni, J.R.: Large amplitude free vibration analysis of cross-ply composite and sandwich laminates with a refined theory and Co finite elements. Comput. Struct. 50(1), 123–134 (1994)

    Article  MATH  Google Scholar 

  • Khare, R.K., Garg, A.K., Kant, T.: Free vibration of sandwich laminates with two higher-order shear deformable facet shell element models. J. Sandw. Struct. Mater. 7(6), 553–554 (2005)

    Article  Google Scholar 

  • Lim, Y.-H., Varadan, V.V., Varadan, K.V.: Closed loop finite element modeling of active constrained layer damping in the time domain analysis. Smart Mater. Struct. 11, 89–97 (2002)

    Article  Google Scholar 

  • Mallik, N., Ray, M.C.: Effective coefficients of piezoelectric fiber-reinforced composites. AIAA J. 41(4), 704–710 (2003)

    Article  Google Scholar 

  • Mc Tavish, D.J., Hughes, P.C.: Modelling of linear viscoelastic space structures. J. Vib. Acoust. 115, 103–113 (1993)

    Article  Google Scholar 

  • Mallikarjuna, Kant, T.: Finite element transient response of composite and sandwich plates with a higher order theory. ASME J. Appl. Mech. 57, 1084–1086 (1990)

    Article  Google Scholar 

  • Margaretha, J.L., Daniel, J.I., William, R.S.: Hybrid damping models using the Golla–Hughes–McTavish method with internally balanced model reduction and output feedback. Smart Mater. Struct. 9, 362–371 (2000)

    Article  Google Scholar 

  • Meng, G., Ye, L., Dong, X.J., Wei, K.X.: Closed loop finite element modeling of piezoelectric smart structures. Shock Vib. 13(1), 1–12 (2006)

    Google Scholar 

  • Moita, J.M.S., Soares, C.M.M., Soares, C.A.M.: Geometrically nonlinear analysis of composite structures with integrated piezoelectric sensors and actuators. Compos. Struct. 57, 253–261 (2002)

    Article  Google Scholar 

  • Nayak, A.K., Shenoi, R.A., Moy, S.S.J.: Damping prediction of composite sandwich plates using assumed strain plate bending elements based on Reddy’s higher-order theory. In: 43rdAIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference, Denver, April 2002, Paper No.1243, pp. 1–11

  • Nayek, A.K., Shenoi, R.A., Moy, S.S.J.: Dynamic response of composite sandwich plates subject to initial stresses. Compos. Part A 37, 1189–1205 (2006)

    Article  Google Scholar 

  • Noor, A.K., Burton, W.S., Bert, C.W.: Computational models for sandwich panels and shells. Appl. Mech. Rev. Trans. ASME 49(3), 155–199 (1996)

    Article  Google Scholar 

  • Pai, P.F., Nafeh, A.H., Oh, K., Mook, D.T.: A refined nonlinear model of composite plates with integrated piezoelectric actuators and sensors. Int. J. Solids. Struct. 30(12), 1603–1630 (1993)

    Article  MATH  Google Scholar 

  • Ray, M.C.: Optimal control of laminated shells with piezoelectric sensor and actuator layers. AIAA J. 41, 1151–1157 (2003)

    Article  Google Scholar 

  • Ray, M.C., Pradhan, A.K.: Performance of vertically reinforced 1–3 piezoelectric composites for active damping of smart structures. Smart Mater. Struct. 15(1), 631–641 (2006)

    Article  Google Scholar 

  • Ray, M.C., Pradhan, A.K.: On the use of vertically reinforced 1–3 piezoelectric composites for hybrid damping of laminated composite plates. Mech. Adv. Mater. Struct. 14(4), 245–261 (2007)

    Article  Google Scholar 

  • Ray, M.C., Shivakumar, J.: Active constrained layer damping of geometrically nonlinear transient vibrations of composite plates using piezoelectric fiber-reinforced composite. Thin Wall. Struct. 47, 178–189 (2009)

    Article  Google Scholar 

  • Reddy, J.N.: Geometrically nonlinear transient analysis of laminated composite plates. AIAA J. 21(4), 621–629 (1983)

    Article  MATH  Google Scholar 

  • Reddy, J.N.: Mechanics of laminated composite plates theory and analysis. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  • Reddy, J.N., Chao, W.C.: Large deflection and large amplitude free vibrations of laminated composite material plates. Comput. Struct. 13, 341–347 (1981)

    Article  MATH  Google Scholar 

  • Ruan, X., Chou, T.W.: A 3-D connectivity model for effective piezoelectric properties of yarn composites. J. Compos. Mater. 36(14), 1693–1708 (2002)

    Article  Google Scholar 

  • Sarangi, S. K., Ray, M. C.: Smart damping of geometrically nonlinear vibrations of laminated composite beams using vertically reinforced 1–3 piezoelectric composites. Smart Mater. Struct. (2010)

  • Sarangi, S.K., Ray, M.C.: Active damping of geometrically nonlinear vibrations of laminated composite plates using vertically reinforced 1–3 piezoelectic composites. Acta Mech. 222, 363–380 (2011)

    Article  MATH  Google Scholar 

  • Smith, W.A., Auld, B.A.: Modelling 1–3 composite piezoelectrics: thickness mode oscillations. IEEE Trans. Ultrason. Ferroelect. Freq. Control 31, 40–47 (1991)

    Article  Google Scholar 

  • Tan, P., Tong, L.: A microelectromechanics model for 3-D PFRC materials. J. Compos. Mater. 36(2), 127–141 (2002)

    Article  Google Scholar 

  • Xu, S.X., Koko, T.S.: Finite element analysis and design of actively controlled piezoelectric smart structures. Finite Elem. Anal. Des. 40(3), 241–262 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Ray.

Appendix

Appendix

In Eq. (28), the matrices \( \left[ {{\text{Z}}_{1} } \right],\,\left[ {{\text{Z}}_{2} } \right],\,\left[ {{\text{Z}}_{3} } \right],\,\left[ {{\text{Z}}_{4} } \right],\, \left[ {{\text{Z}}_{5} } \right],\,\left[ {{\text{Z}}_{6} } \right],\,\left[ {{\text{Z}}_{7} } \right],\,\left[ {{\text{Z}}_{8} } \right],\,\left[ {{\text{Z}}_{9} } \right] \) and \( \left[ {{\text{Z}}_{10} } \right] \) are given by

$$ \begin{aligned} \left[ {{\text{Z}}_{1} } \right] & = {\left[ \begin{array}{lllll} [{{\bar{\text{Z}}}_{1} }] & \widetilde{0} & \widetilde{0} & \widetilde{0} & \widetilde{0} \\ \end{array} \right]} \\ \left[ {{\text{Z}}_{2} } \right] & = {\left[\begin{array}{lllll} ( - {\text{h}}_{\text{c}}){\text{I}}& \left[ {{\bar{\text{Z}}}_{2} } \right] & \widetilde{0} & \widetilde{0} & \widetilde{0} \\ \end{array} \right]} \\ \left[ {{\text{Z}}_{3} } \right] & = {\left[\begin{array}{lllll} ({\text{h}}_{\text{c}} ){\text{I }} & \widetilde{0} & \left[ {{\bar{\text{Z}}}_{3} } \right]& \widetilde{0} & \widetilde{0}\\ \end{array}\right]} \\ \left[ {{\text{Z}}_{4} } \right] & = {\left[\begin{array}{lllll} ({\text{h}}_{\text{c}} ){\text{I }} & \widetilde{0} & ({\text{h}}){\text{I }}& ({\text{h}}_{\text{v}} ){\text{I}} & \left[ {{\bar{\text{Z}}}_{5} } \right]\\ \end{array} \right]} \\ \left[ {{\text{Z}}_{5} } \right] & = {\left[\begin{array}{llllllllll} \overline{\text{I}} & \overline{0} & \overline{0} & \overline{0} & \overline{0} & {\text{z}}\overline{\text{I}}& \overline{0} & \overline{0} & \overline{0} & \overline{0} \\ \end{array}\right]} \\ \left[ {{\text{Z}}_{6} } \right] & = {\left[\begin{array}{llllllllll} \overline{0} & \overline{\text{I}} & \overline{0} & \overline{0} & \overline{0} & ({-{\text{h}}_{\text{c}}})\overline{\text{I}} & ({\text{z}} + {\text{h}}_{\text{c}} )\overline{\text{I}} & \overline{0} & \overline{0}& \overline{0} \\ \end{array}\right]} \\ \left[ {{\text{Z}}_{7} } \right] & = {\left[\begin{array}{llllllllll} \overline{0}& \overline{0} & \overline{\text{I}} & \overline{0} & \overline{0} & ({{\text{h}}_{\text{c}} })\overline{\text{I}}& \overline{0} & ({\text{z}}-{\text{h}}_{\text{c}} )\overline{\text{I}} & \overline{0}& \overline{0} \\ \end{array} \right]} \\ \left[ {{\text{Z}}_{8} } \right] & = {\left[\begin{array}{llllllllll} \overline{0} & \overline{0} & \overline{0} & \overline{\text{I}} & \overline{0} & ({{\text{h}}_{\text{c}} })\overline{\text{I}} & \overline{0}& ({\text{h}})\overline{\text{I}} & ({\text{z}}-{\text{h}}_{\text{c}} - {\text{h}})\overline{\text{I}} & \overline{0} \\ \end{array}\right]} \\ \left[{{\text{Z}}_{9}}\right] & = {\left[\begin{array}{llllllllll} \overline{0} & \overline{0} & \overline{0} & \overline{0} & \overline{\text{I}} & \left( {{\text{h}}_{\text{c}} } \right)\overline{\text{I}} & \overline{0} & ({\text{h}})\overline{\text{I}} & {\text{h}}_{\text{v}} \overline{\text{I}} & ({\text{z}} - {\text{h}}_{\text{c}} - {\text{h}} - {\text{h}}_{\text{v}} )\overline{\text{I}}\\ \end{array}\right]} \\ \end{aligned} $$

where

$$ \left[ {\overline{\text{Z}}_{1} } \right] = \left[ {\begin{array}{llll}{\text{z}} & 0 & 0 & 0 \\ 0& Z & 0 & 0\\ 0 & 0& Z&0\\ 0 & 0& 0 & 1 \\ \end{array}}\right], \quad \left[ {\overline{\text{Z}}_{2} } \right] = \left[\begin{array}{cccc}({{\text{z}} - {\text{h}}_{\text{c}} } ) & 0 &0 & 0 \\ 0 & {({\text{z}} - {\text{h}}_{\text{c}} )} & 0 & 0 \\ 0 & 0 & {({{\text{z}} - {\text{h}}_{\text{c}} } ) } & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right], \quad [ {\overline{\text{Z}}_{3} } ] = \left[ {\begin{array}{cccc} ( {{\text{z}} + {\text{h}}_{\text{c}} }) & 0 & 0 & 0 \\ 0 & { ({\text{z}} + {\text{h}}_{\text{c}} )} & 0 & 0 \\ 0 & 0 & {({{\text{z}} + {\text{h}}_{\text{c}} })} & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}}\right], \quad [{\overline{\text{Z}}_{5}}] = \left[ \begin{array}{cccc} ({{\text{z}} - {\text{h}}_{\text{c}} - {\text{h}} - {\text{h}}_{\text{v}} } ) & 0 & 0 & 0 \\ 0 & ({\text{z}} - {\text{h}}_{\text{c}} - {\text{h}} - {\text{h}}_{\text{v}} ) \\ & 0 & 0 \\ 0 & 0 & {( {{\text{z}} - {\text{h}}_{\text{c}} - {\text{h}} - {\text{h}}_{\text{v}} }) } & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right], \quad {\text{I}} = \left[ {\begin{array}{llll} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} }\right], \quad \overline{\text{I}} = \left[ {\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ \end{array} } \right],\quad \overline{0} = \left[ {\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ \end{array} }\right], \quad \widetilde{0} = \left[ \begin{array}{llll} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array}\right] $$

The various submatrices \( \left[ {{\mathbf{B}}_{tbi} } \right],\,\left[ {{\mathbf{B}}_{rbi} } \right],\,\left[ {{\mathbf{B}}_{tsi} } \right] \) and \( \left[ {{\mathbf{B}}_{rsi} } \right] \) appearing in Eq. (29)

$$ \begin{gathered} \left[{{\mathbf{B}}_{tbi}} \right] = \left[{\begin{array}{*{20}c} {\begin{array}{*{20}c} {\frac{{\partial n_{i}}}{\partial x} } & 0 & 0 \\ \end{array}} \\ {\begin{array}{*{20}c} 0 & { \frac{{\partial n_{i}}}{\partial y}} & 0 \\ \end{array}} \\ {\begin{array}{*{20}c} {\frac{{\partial n_{i}}}{\partial y}} & {\frac{{\partial n_{i}}}{\partial x}} & 0 \\ \end{array}} \\ {\begin{array}{*{20}c} 0 & { 0} & { 0} \\ \end{array}} \\ \end{array}} \right],\,\left[{{\mathbf{B}}_{tsi}} \right] = \left[{\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 & 0 & {\frac{{\partial n_{i}}}{\partial x}} \\ \end{array}} \\ {\begin{array}{*{20}c} 0 & 0 & {\frac{{\partial n_{i}}}{\partial y}} \\ \end{array}} \\ \end{array}} \right] \hfill \\ \left[{{\mathbf{B}}_{rbi}} \right] = \left[{\begin{array}{*{20}c} {\begin{array}{*{20}c} {\widehat{{{\mathbf{B}}_{rbi}}}} & {\check{0}} & {\check{0}} \\ \end{array} \begin{array}{*{20}c} {\check{0}} & {\check{0}} \\ \end{array}} \\ {\begin{array}{*{20}c} {\check{0}} & {\widehat{{{\mathbf{B}}_{rbi}}}} & {\check{0}} \\ \end{array} \begin{array}{*{20}c} {\check{0}} & {\check{0}} \\ \end{array}} \\ {\begin{array}{*{20}c} {\check{0}} & {\check{0}} & {\widehat{{{\mathbf{B}}_{rbi}}}} \\ \end{array} \begin{array}{*{20}c} {\check{0}} & {\check{0}} \\ \end{array}} \\ {\begin{array}{*{20}c} {\check{0}} & {\check{0}} & {\check{0}} \\ \end{array} \begin{array}{*{20}c} {\widehat{{{\mathbf{B}}_{rbi}}}} & {\check{0}} \\ \end{array}} \\ {\begin{array}{*{20}c} {\check{0}} & {\check{0}} & {\check{0}} \\ \end{array} \begin{array}{*{20}c} {\check{0}} & {\widehat{{{\mathbf{B}}_{rbi}}}} \\ \end{array}} \\ \end{array}} \right],\,\widehat{{{\mathbf{B}}_{rbi}}} = \left[{\begin{array}{*{20}c} {\begin{array}{*{20}c} {\frac{{\partial n_{i}}}{\partial x} } & 0 & 0 \\ \end{array}} \\ {\begin{array}{*{20}c} 0 & { \frac{{\partial n_{i}}}{\partial y}} & 0 \\ \end{array}} \\ {\begin{array}{*{20}c} {\frac{{\partial n_{i}}}{\partial y}} & {\frac{{\partial n_{i}}}{\partial x}} & 0 \\ \end{array}} \\ {\begin{array}{*{20}c} 0 & { 0} & { 1} \\ \end{array}} \\ \end{array}} \right],\,\check{0} = \left[{\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 & 0 & 0 \\ \end{array}} \\ {\begin{array}{*{20}c} 0 & 0 & 0 \\ \end{array}} \\ {\begin{array}{*{20}c} 0 & 0 & 0 \\ \end{array}} \\ {\begin{array}{*{20}c} 0 & 0 & 0 \\ \end{array}} \\ \end{array}} \right] \hfill \\ \left[{{\mathbf{B}}_{rsi}} \right] = \left[{\begin{array}{*{20}c} {\begin{array}{*{20}c} {\check{\rm I} } & {{{\ddot{0}}} } & {{{\ddot{0}}}} \\ \end{array} \begin{array}{*{20}c} {{{\ddot{0}}} } & {{{\ddot{0}}}} \\ \end{array}} \\ {\begin{array}{*{20}c} {{{\ddot{0}}} } & {\check{\rm I} } & {{{\ddot{0}}}} \\ \end{array} \begin{array}{*{20}c} {{{\ddot{0}}}} & { {{\ddot{0}}}} \\ \end{array}} \\ {\begin{array}{*{20}c} {{{\ddot{0}}} } & {{{\ddot{0}}} } & {\check{\rm I}} \\ \end{array} \begin{array}{*{20}c} {{{\ddot{0}}} } & {{{\ddot{0}}}} \\ \end{array}} \\ {\begin{array}{*{20}c} {{{\ddot{0}}} } & {{{\ddot{0}}} } & {{{\ddot{0}}}} \\ \end{array} \begin{array}{*{20}c} {\check{\rm I} } & {{{\ddot{0}}}} \\ \end{array}} \\ {\begin{array}{*{20}c} {{{\ddot{0}}} } & {{{\ddot{0}}} } & {{{\ddot{0}}}} \\ \end{array} \begin{array}{*{20}c} {{{\ddot{0}}} } & {\check{\rm I}} \\ \end{array}} \\ {\begin{array}{*{20}c} {\widehat{{{\mathbf{B}}_{rsi}}}} & {{{\ddot{0}}}} & {{{\ddot{0}}}} \\ \end{array} \begin{array}{*{20}c} {{{\ddot{0}}}} & {{{\ddot{0}}}} \\ \end{array}} \\ {\begin{array}{*{20}c} {{{\ddot{0}}}} & {\widehat{{{\mathbf{B}}_{rsi}}}} & {{{\ddot{0}}}} \\ \end{array} \begin{array}{*{20}c} {{{\ddot{0}}}} & {{{\ddot{0}}}} \\ \end{array}} \\ {\begin{array}{*{20}c} {{{\ddot{0}}}} & {{{\ddot{0}}}} & {\widehat{{{\mathbf{B}}_{rsi}}}} \\ \end{array} \begin{array}{*{20}c} {{{\ddot{0}}}} & {{{\ddot{0}}}} \\ \end{array}} \\ {\begin{array}{*{20}c} {{{\ddot{0}}}} & {{{\ddot{0}}}} & {{{\ddot{0}}}} \\ \end{array} \begin{array}{*{20}c} {\widehat{{{\mathbf{B}}_{rsi}}}} & {{{\ddot{0}}}} \\ \end{array}} \\ {\begin{array}{*{20}c} {{{\ddot{0}}}} & {{{\ddot{0}}}} & {{{\ddot{0}}}} \\ \end{array} \begin{array}{*{20}c} {{{\ddot{0}}}} & {\widehat{{{\mathbf{B}}_{rsi}}}} \\ \end{array}} \\ \end{array}} \right],\,\widehat{{{\mathbf{B}}_{rsi}}} = \left[{\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 & 0 & {\frac{{\partial n_{i}}}{\partial x}} \\ \end{array}} \\ {\begin{array}{*{20}c} 0 & 0 & {\frac{{\partial n_{i}}}{\partial y}} \\ \end{array}} \\ \end{array}} \right],\, {\ddot{0}} = \left[{\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 & 0 & 0 \\ \end{array}} \\ {\begin{array}{*{20}c} 0 & 0 & 0 \\ \end{array}} \\ \end{array}} \right] \hfill \\ \end{gathered} $$

The various rigidity matrices and the rigidity vectors for electro-elastic coupling appearing in the above elemental matrices are given by

$$ \begin{aligned} \left[ {{\mathbf{D}}_{{{\mathbf{tb}}}}^{{\mathbf{b}}} } \right] & = \mathop \sum \limits_{{{\mathbf{k}} = {\mathbf{1}}}}^{{\mathbf{n}}} \int \limits_{{{\mathbf{h}}_{{\mathbf{k}}} }}^{{{\mathbf{h}}_{{{\mathbf{k}} + {\mathbf{1}}}} }} \left[ {\overline{{\mathbf{C}}}_{{\mathbf{b}}}^{{\mathbf{b}}} } \right]^{{\mathbf{k}}} {\mathbf{dz}},\,\left[ {{\mathbf{D}}_{{{\mathbf{trb}}}}^{{\mathbf{b}}} } \right] = \mathop \sum \limits_{{{\mathbf{k}} = {\mathbf{1}}}}^{{\mathbf{n}}} \int \limits_{{{\mathbf{h}}_{{\mathbf{k}}} }}^{{{\mathbf{h}}_{{{\mathbf{k}} + {\mathbf{1}}}} }} \left[ {\overline{{\mathbf{C}}}_{{\mathbf{b}}}^{{\mathbf{b}}} } \right]^{{\mathbf{k}}} \left[ {{\mathbf{Z}}_{{\mathbf{1}}} } \right]{\mathbf{dz}},\,\left[ {{\mathbf{D}}_{{{\mathbf{ts}}}}^{{\mathbf{b}}} } \right] = \mathop \sum \limits_{{{\mathbf{k}} = {\mathbf{1}}}}^{{\mathbf{n}}} \int \limits_{{{\mathbf{h}}_{{\mathbf{k}}} }}^{{{\mathbf{h}}_{{{\mathbf{k}} + {\mathbf{1}}}} }} \left[ {\overline{{\mathbf{C}}}_{{\mathbf{s}}}^{{\mathbf{b}}} } \right]^{{\mathbf{k}}} {\mathbf{dz}}, \\ \left[ {{\mathbf{D}}_{{{\mathbf{trs}}}}^{{\mathbf{b}}} } \right] & = \mathop \sum \limits_{{{\mathbf{k}} = {\mathbf{1}}}}^{{\mathbf{n}}} \int \limits_{{{\mathbf{h}}_{{\mathbf{k}}} }}^{{{\mathbf{h}}_{{{\mathbf{k}} + {\mathbf{1}}}} }} \left[ {\overline{{\mathbf{C}}}_{{\mathbf{s}}}^{{\mathbf{b}}} } \right]^{{\mathbf{k}}} \left[ {{\mathbf{Z}}_{5} } \right]{\mathbf{dz}},\,\left[ {{\mathbf{D}}_{{{\mathbf{rrb}}}}^{{\mathbf{b}}} } \right] = \mathop \sum \limits_{{{\mathbf{k}} = {\mathbf{1}}}}^{{\mathbf{n}}} \int \limits_{{{\mathbf{h}}_{{\mathbf{k}}} }}^{{{\mathbf{h}}_{{{\mathbf{k}} + {\mathbf{1}}}} }} \left[ {{\mathbf{Z}}_{{\mathbf{1}}} } \right]^{{\mathbf{T}}} \left[ {\overline{{\mathbf{C}}}_{{\mathbf{s}}}^{{\mathbf{b}}} } \right]^{{\mathbf{k}}} \left[ {{\mathbf{Z}}_{{\mathbf{1}}} } \right]{\mathbf{dz}}, \\ \left[ {{\mathbf{D}}_{{{\mathbf{rrs}}}}^{{\mathbf{b}}} } \right] & = \mathop \sum \limits_{{{\mathbf{k}} = {\mathbf{1}}}}^{{\mathbf{n}}} \int \limits_{{{\mathbf{h}}_{{\mathbf{k}}} }}^{{{\mathbf{h}}_{{{\mathbf{k}} + {\mathbf{1}}}} }} \left[ {{\mathbf{Z}}_{{\mathbf{5}}} } \right]^{{\mathbf{T}}} \left[ {\overline{{\mathbf{C}}}_{{\mathbf{s}}}^{{\mathbf{b}}} } \right]^{{\mathbf{k}}} \left[ {{\mathbf{Z}}_{{\mathbf{5}}} } \right]{\mathbf{dz}} \\ \left[ {{\mathbf{D}}_{{{\mathbf{tb}}}}^{{\mathbf{t}}} } \right] & = \mathop \sum \limits_{{{\mathbf{k}} = {\mathbf{1}}}}^{{\mathbf{n}}} \int \limits_{{{\mathbf{h}}_{{\mathbf{k}}} }}^{{{\mathbf{h}}_{{{\mathbf{k}} + {\mathbf{1}}}} }} \left[ {\overline{{\mathbf{C}}}_{{\mathbf{b}}}^{{\mathbf{t}}} } \right]^{{\mathbf{k}}} {\mathbf{dz}},\,\left[ {{\mathbf{D}}_{{{\mathbf{trb}}}}^{{\mathbf{t}}} } \right] = \mathop \sum \limits_{{{\mathbf{k}} = {\mathbf{1}}}}^{{\mathbf{n}}} \int \limits_{{{\mathbf{h}}_{{\mathbf{k}}} }}^{{{\mathbf{h}}_{{{\mathbf{k}} + {\mathbf{1}}}} }} \left[ {\overline{{\mathbf{C}}}_{{\mathbf{b}}}^{{\mathbf{t}}} } \right]^{{\mathbf{k}}} \left[ {{\mathbf{Z}}_{{\mathbf{3}}} } \right]{\mathbf{dz}},\,\left[ {{\mathbf{D}}_{{{\mathbf{ts}}}}^{{\mathbf{t}}} } \right] = \mathop \sum \limits_{{{\mathbf{k}} = {\mathbf{1}}}}^{{\mathbf{n}}} \int \limits_{{{\mathbf{h}}_{{\mathbf{k}}} }}^{{{\mathbf{h}}_{{{\mathbf{k}} + {\mathbf{1}}}} }} \left[ {\overline{{\mathbf{C}}}_{{\mathbf{s}}}^{{\mathbf{t}}} } \right]^{{\mathbf{k}}} {\mathbf{dz}}, \\ \left[ {{\mathbf{D}}_{{{\mathbf{trs}}}}^{{\mathbf{t}}} } \right] & = \mathop \sum \limits_{{{\mathbf{k}} = {\mathbf{1}}}}^{{\mathbf{n}}} \int \limits_{{{\mathbf{h}}_{{\mathbf{k}}} }}^{{{\mathbf{h}}_{{{\mathbf{k}} + {\mathbf{1}}}} }} \left[ {\overline{{\mathbf{C}}}_{{\mathbf{s}}}^{{\mathbf{t}}} } \right]^{{\mathbf{k}}} \left[ {{\mathbf{Z}}_{{\mathbf{7}}} } \right]{\mathbf{dz}},\,\left[ {{\mathbf{D}}_{{{\mathbf{rrb}}}}^{{\mathbf{t}}} } \right] = \mathop \sum \limits_{{{\mathbf{k}} = {\mathbf{1}}}}^{{\mathbf{n}}} \int \limits_{{{\mathbf{h}}_{{\mathbf{k}}} }}^{{{\mathbf{h}}_{{{\mathbf{k}} + {\mathbf{1}}}} }} \left[ {{\mathbf{Z}}_{{\mathbf{3}}} } \right]^{{\mathbf{T}}} \left[ {\overline{{\mathbf{C}}}_{{\mathbf{s}}}^{{\mathbf{t}}} } \right]^{{\mathbf{k}}} \left[ {{\mathbf{Z}}_{{\mathbf{3}}} } \right]{\mathbf{dz}}, \\ \left[ {{\mathbf{D}}_{{{\mathbf{rrs}}}}^{{\mathbf{t}}} } \right] & = \mathop \sum \limits_{{{\mathbf{k}} = {\mathbf{1}}}}^{{\mathbf{n}}} \int \limits_{{{\mathbf{h}}_{{\mathbf{k}}} }}^{{{\mathbf{h}}_{{{\mathbf{k}} + {\mathbf{1}}}} }} \left[ {{\mathbf{Z}}_{{\mathbf{7}}} } \right]^{{\mathbf{T}}} \left[ {\overline{{\mathbf{C}}}_{{\mathbf{s}}}^{{\mathbf{t}}} } \right]^{{\mathbf{k}}} \left[ {{\mathbf{Z}}_{{\mathbf{7}}} } \right]{\mathbf{dz}} \\ \left[ {{\mathbf{D}}_{ts}^{b} } \right] & = \left[ {{\mathbf{C}}_{s}^{b} } \right]{\text{h}},\, \left[ {{\mathbf{D}}_{ts}^{c} } \right] = 2\left[ {{\mathbf{C}}_{s}^{c} } \right]{\text{h}}_{\text{c}} ,\, \left[ {{\mathbf{D}}_{ts}^{t} } \right] = \left[ {{\mathbf{C}}_{s}^{t} } \right]{\text{h}}, \left[ {{\mathbf{D}}_{ts}^{v} } \right] = \left[ {{\mathbf{C}}_{s}^{v} } \right]{\text{h}}_{\text{v}} , \left[ {{\mathbf{D}}_{ts}^{p} } \right] = \left[ {{\mathbf{C}}_{s}^{p} } \right]{\text{h}}_{\text{p}} \\ \left[ {{\mathbf{D}}_{tbs}^{p} } \right] & = \left[ {{\mathbf{D}}_{bs}^{p} } \right]{\text{h}}_{p} ,\, \left[ {{\mathbf{D}}_{trbs}^{p} } \right] = \,\int \limits_{{h_{5} }}^{{h_{6} }} \left[ {{\mathbf{C}}_{bs}^{p} } \right]\left[ {{\mathbf{Z}}_{10} } \right]{\text{d}}z,\, \left[ {{\mathbf{D}}_{rtbs}^{p} } \right] = \,\int \limits_{{h_{5} }}^{{h_{6} }} \left[ {{\mathbf{Z}}_{5} } \right]^{\text{T}} \left[ {{\mathbf{C}}_{bs}^{p} } \right]{\text{d}}z \\ \left[ {{\mathbf{D}}_{rrbs}^{p} } \right] & = \int \limits_{{h_{5} }}^{{h_{6} }} \left[ {{\mathbf{Z}}_{5} } \right]^{\text{T}} \left[ {{\mathbf{C}}_{bs}^{p} } \right]\left[ {{\mathbf{Z}}_{10} } \right]{\text{d}}z,\, \left[ {{\mathbf{D}}_{trb}^{b} } \right] = \int \limits_{{h_{1} }}^{{h_{2} }} \left[ {{\mathbf{C}}_{b}^{b} } \right]\left[ {{\mathbf{Z}}_{1} } \right]{\text{d}}z,\,\left[ {{\mathbf{D}}_{trb}^{c} } \right] = \int \limits_{{h_{2} }}^{{h_{3} }} \left[ {{\mathbf{C}}_{b}^{c} } \right]\left[ {{\mathbf{Z}}_{2} } \right]{\text{d}}z \\ \left[ {{\mathbf{D}}_{trb}^{t} } \right] & = \int \limits_{{h_{3} }}^{{h_{4} }} \left[ {{\mathbf{C}}_{b}^{t} } \right]\left[ {{\mathbf{Z}}_{3} } \right]{\text{d}}z, \left[ {{\mathbf{D}}_{trb}^{v} } \right] = \int \limits_{{h_{4} }}^{{h_{5} }} \left[ {{\mathbf{C}}_{b}^{v} } \right]\left[ {{\mathbf{Z}}_{4} } \right]{\text{d}}z,\,\left[ {{\mathbf{D}}_{trb}^{p} } \right] = \int \limits_{{h_{5} }}^{{h_{6} }} \left[ {{\mathbf{C}}_{b}^{p} } \right]\left[ {{\mathbf{Z}}_{5} } \right]{\text{d}}z \\ \left[ {{\mathbf{D}}_{rrb}^{b} } \right] & = \int \limits_{{h_{1} }}^{{h_{2} }} \left[ {{\mathbf{Z}}_{1} } \right]^{\text{T}} \left[ {{\mathbf{C}}_{b}^{b} } \right]\left[ {{\mathbf{Z}}_{1} } \right]{\text{d}}z,\,\left[ {{\mathbf{D}}_{rrb}^{c} } \right] = \int \limits_{{h_{2} }}^{{h_{3} }} \left[ {{\mathbf{Z}}_{2} } \right]^{\text{T}} \left[ {{\mathbf{C}}_{bs}^{p} } \right]\left[ {{\mathbf{Z}}_{2} } \right]{\text{d}}z,\,\left[ {{\mathbf{D}}_{rrb}^{t} } \right] = \int \limits_{{h_{3} }}^{{h_{4} }} \left[ {{\mathbf{Z}}_{3} } \right]^{\text{T}} \left[ {{\mathbf{C}}_{bs}^{p} } \right]\left[ {{\mathbf{Z}}_{3} } \right]{\text{d}}z \\ \left[ {{\mathbf{D}}_{rrb}^{v} } \right] & = \int \limits_{{h_{4} }}^{{h_{5} }} \left[ {{\mathbf{Z}}_{4} } \right]^{\text{T}} \left[ {{\mathbf{C}}_{bs}^{p} } \right]\left[ {{\mathbf{Z}}_{4} } \right]{\text{d}}z,\,\left[ {{\mathbf{D}}_{rrb}^{p} } \right] = \int \limits_{{h_{5} }}^{{h_{6} }} \left[ {{\mathbf{Z}}_{5} } \right]^{\text{T}} \left[ {{\mathbf{C}}_{bs}^{p} } \right]\left[ {{\mathbf{Z}}_{5} } \right]{\text{d}}z,\, \left[ {{\mathbf{D}}_{trs}^{b} } \right] = \int \limits_{{h_{1} }}^{{h_{2} }} \left[ {{\mathbf{C}}_{s}^{b} } \right]\left[ {{\mathbf{Z}}_{6} } \right]{\text{d}}z \\ \left[ {{\mathbf{D}}_{trs}^{c} } \right] & = \int \limits_{{h_{2} }}^{{h_{3} }} \left[ {{\mathbf{C}}_{s}^{c} } \right]\left[ {{\mathbf{Z}}_{7} } \right]{\text{d}}z,\,\left[ {{\mathbf{D}}_{trs}^{t} } \right] = \int \limits_{{h_{3} }}^{{h_{4} }} \left[ {{\mathbf{C}}_{s}^{t} } \right]\left[ {{\mathbf{Z}}_{8} } \right]{\text{d}}z,\,\left[ {{\mathbf{D}}_{trs}^{v} } \right] = \int \limits_{{h_{4} }}^{{h_{5} }} \left[ {{\mathbf{C}}_{s}^{v} } \right]\left[ {{\mathbf{Z}}_{9} } \right]{\text{d}}z,\,\left[ {{\mathbf{D}}_{trs}^{p} } \right] = \int \limits_{{h_{5} }}^{{h_{6} }} \left[ {{\mathbf{C}}_{s}^{p} } \right]\left[ {{\mathbf{Z}}_{10} } \right]{\text{d}}z, \\ \left[ {{\mathbf{D}}_{rrs}^{b} } \right] & = \int \limits_{{h_{1} }}^{{h_{2} }} \left[ {{\mathbf{Z}}_{6} } \right]^{\text{T}} \left[ {{\mathbf{C}}_{s}^{b} } \right]\left[ {{\mathbf{Z}}_{6} } \right]{\text{d}}z,\left[ {{\mathbf{D}}_{rrs}^{c} } \right] = \int \limits_{{h_{2} }}^{{h_{3} }} \left[ {{\mathbf{Z}}_{7} } \right]^{\text{T}} \left[ {{\mathbf{C}}_{s}^{c} } \right]\left[ {{\mathbf{Z}}_{7} } \right]{\text{d}}z, \\ \left[ {{\mathbf{D}}_{rrs}^{t} } \right] & = \int \limits_{{h_{3} }}^{{h_{4} }} \left[ {{\mathbf{Z}}_{8} } \right]^{\text{T}} \left[ {{\mathbf{C}}_{s}^{t} } \right]\left[ {{\mathbf{Z}}_{8} } \right]{\text{d}}z,\,\left[ {{\mathbf{D}}_{rrs}^{v} } \right] = \int \limits_{{h_{4} }}^{{h_{5} }} \left[ {{\mathbf{Z}}_{9} } \right]^{\text{T}} \left[ {{\mathbf{C}}_{s}^{v} } \right]\left[ {{\mathbf{Z}}_{9} } \right]{\text{d}}z,\,\left[ {{\mathbf{D}}_{rrs}^{p} } \right] = \int \limits_{{h_{5} }}^{{h_{6} }} \left[ {{\mathbf{Z}}_{10} } \right]^{\text{T}} \left[ {{\mathbf{C}}_{s}^{p} } \right]\left[ {{\mathbf{Z}}_{10} } \right]{\text{d}}z \\ \left\{ {{\mathbf{D}}_{tb}^{p} } \right\} & = - \int \limits_{{h_{5} }}^{{h_{6} }} {\raise0.7ex\hbox{${\left\{ {{\mathbf{e}}_{b} } \right\}}$} \!\mathord{\left/ {\vphantom {{\left\{ {{\mathbf{e}}_{b} } \right\}} {{\text{h}}_{p} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${{\text{h}}_{p} }$}} {\text{d}}z,\, \left\{ {{\mathbf{D}}_{ts}^{p} } \right\} = - \int \limits_{{h_{5} }}^{{h_{6} }} {\raise0.7ex\hbox{${\left\{ {{\mathbf{e}}_{s} } \right\}}$} \!\mathord{\left/ {\vphantom {{\left\{ {{\mathbf{e}}_{s} } \right\}} {{\text{h}}_{p} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${{\text{h}}_{p} }$}} {\text{d}}z,\,\left\{ {{\mathbf{D}}_{rb}^{p} } \right\} = - \int \limits_{{h_{5} }}^{{h_{6} }} \left[ {{\mathbf{Z}}_{5} } \right]^{\text{T}} {\raise0.7ex\hbox{${\left\{ {{\mathbf{e}}_{b} } \right\}}$} \!\mathord{\left/ {\vphantom {{\left\{ {{\mathbf{e}}_{b} } \right\}} {{\text{h}}_{p} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${{\text{h}}_{p} }$}} {\text{d}}z \\ \left\{ {{\mathbf{D}}_{rs}^{p} } \right\} & = - \int \limits_{{h_{5} }}^{{h_{6} }} \left[ {{\mathbf{Z}}_{10} } \right]^{\text{T}} {\raise0.7ex\hbox{${\left\{ {{\mathbf{e}}_{s} } \right\}}$} \!\mathord{\left/ {\vphantom {{\left\{ {{\mathbf{e}}_{s} } \right\}} {{\text{h}}_{p} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${{\text{h}}_{p} }$}} {\text{d}}z, \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, R.S., Ray, M.C. Active constrained layer damping of geometrically nonlinear vibrations of smart laminated composite sandwich plates using 1–3 piezoelectric composites. Int J Mech Mater Des 8, 359–380 (2012). https://doi.org/10.1007/s10999-012-9201-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-012-9201-y

Keywords

Navigation