Skip to main content
Log in

Dynamic performance of a nonlinear non-dimensional two stage electrohydraulic servovalve model

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Electrohydraulic servosystems are commonly used in various engineering applications due to their high power-to-weight ratio, good performance, and ease of control. An electrohydraulic servovalve is an essential item of fluid power servomechanism where fast response, high power output and working fidelity are necessary. A full description of the dynamic performance of a two stage electrohydraulic servovalve is presented. Nonlinear Non-dimensional mathematical model has been developed for that purpose. The system main equations could be derived in minimal symbolic forms; which facilitates a subsequent numerical simulation in order to investigate the static and dynamic behaviors. In addition to a step response, ramp and sinusoidal inputs responses are investigated. The model has been coded in the software package Matlab/Simulink (Liuping, Modern control systems analysis and design using Matlab and Simulink, Springr-Verlag, London, 2009). The use of the non-dimensional form enables designer to expect the valve behavior of the same shape but with different sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A p , A n , A o , A s :

Area of load piston, nozzle, orifice, and spool respectively (m2)

\( a_{r} ,\bar{a}_{r} \) :

Dimensional and non-dimensional oil film inertia coefficients respectively (N, –)

\( b_{r} ,\bar{b}_{r} \) :

Dimensional and non-dimensional oil film damping coefficients respectively (N, –)

\( B_{a} ,\bar{B}_{a} \) :

Dimensional and non-dimensional viscous damping coefficient of armature pivot respectively (N m rad−1, –)

B p :

Viscous damping coefficient of load piston (N s m−1)

C dn , C do , C ds :

Discharge coefficient of nozzle, orifice, and spool respectively

C lp , C ls :

Leakage coefficient of load piston, spool valves (m3 Pa−1 s−1)

C rd , C rp , C rs :

Radial clearance of squeeze film damper, load piston, and between spools and sleeves respectively (m)

C v :

Spool valve velocity coefficient

d p , d n , d o , d s :

Diameter of load piston, nozzle, orifice, and spool respectively (m)

\( e,\bar{e} \) :

Dimensional and non-dimensional torque motor input voltages respectively (V, –)

E b , eb:

Bias voltage in torque motor circuit, and feedback voltage respectively (V)

F h :

Hydraulic force on flapper (N)

\( F_{sf} ,\bar{F}_{sf} ,F_{sh} ,F_{ext} \) :

Dimensional and non-dimensional squeeze film damping forces on the flapper, Shear damping force on a spool and the external force acting on the load piston respectively (N, –, N, N)

H:

Distance from squeeze film damper center to the pivot (m)

\( i,\bar{i},I_{o} , \) :

Dimensional and non-dimensional torque motor differential current, and, quiescent current in torque motor respectively (A, –, A)

\( J_{a} ,\bar{J}_{a} \) :

Dimensional and non-dimensional polar mass moment of inertia of armature and flapper around the pivot respectively (kg m2)

\( K_{a} ,\bar{K}_{a} \) :

Dimensional and non-dimensional rate of the rotational spring fixed at the armature pivot respectively (N m rad−1)

\( K_{pg} ,\bar{K}_{pg} \) :

Dimensional and non-dimensional potentiometer gain constants (Vm−1)

\( K_{da} ,K_{pa} \) :

Differential amplifier, power amplifier gain constants respectively

\( K_{tg} ,\bar{K}_{tg} \) :

Dimensional and non-dimensional transformer gain constant respectively (Vm−1, –)

\( K_{t} ,K_{m} \) :

Torque constant and magnetic spring constants of torque motor respectively (N m A−1, N m rad−1)

\( K_{an} ,\bar{K}_{an} \) :

Dimensional and non-dimensional net torque motor spring rates respectively (N m rad−1, –)

\( K_{n} ,\bar{K}_{n} \) :

Dimensional, and non-dimensional nozzle diameter parameters (m (m3 kg−1)−1, –)

\( K_{o} ,\bar{K}_{o} \) :

Dimensional and non-dimensional orifice area parameters (m2 (m3 kg−1)−1, –)

Kp:

Equivalent stiffness of load piston springs (N/m)

\( L,\bar{L} \) :

Dimensional and non-dimensional coil inductance of torque motor (H)

\( L_{t} \) :

Distance between supply pressure port and flow output port (m)

M p , M s :

Masses of load piston and spool respectively (kg)

\( \bar{N} \) :

Non-dimensional spring rate due to flow striking the flapper

\( \begin{gathered} p_{1} ,p_{2} ,\bar{p}_{1} ,\bar{p}_{2} , \hfill \\ p_{a} ,p_{b} ,\bar{p}_{a} ,\bar{p}_{b} \hfill \\ \end{gathered} \) :

Dimensional, and non-dimensional output pressures of the first, and second stages respectively (Pa, –, Pa, –)

\( p_{L} ,\bar{p}_{L} \) :

Dimensional, and non-dimensional differential pressures across the load piston respectively (Pa, –)

\( P_{s} ,\bar{p}_{t} \) :

Supply pressure and reservoir pressure respectively (Pa)

Q 1, Q 3, Q 2, Q 4 :

Flow through orifices and nozzles respectively (m3/s)

Q 5, Q 6, Q a, Q b :

Flow rates from/to second stage to/from first stage, and flow rates from/to piston to/from second stage (m3/s)

Q lp , Q ls :

Leakage flow through the load piston, through spools from/to reservoir (m3/s)

c :

Distance from pivot to nozzle (m)

\( r_{p} ,R,\bar{R} \) :

Internal resistance of amplifier in each coil circuit, dimensional, and non-dimensional coil resistances of torque motor respectively (Ω, –)

R d :

Radius of squeeze film damper (m)

t, τ :

Dimensional and non-dimensional times respectively (s, –)

\( \bar{T} \) :

Non-dimensional flapper nozzle valve flow force parameter

V 1, V 2 :

Initial volumes of top and bottom spool chambers (m3)

V t :

Total volume of oil cylinder chambers and connecting lines (m3)

W p :

Port width (m)

\( x_{a} ,x_{b} ,x_{f} ,\bar{x}_{a} ,\bar{x}_{b} ,\bar{x}_{f} \) :

Dimensional and non-dimensional displacements of left spool, right spool, and flapper respectively (m, –)

x f0 :

Equilibrium position of the flapper (m)

\( \begin{gathered} x_{i} ,\bar{x}_{i} ,x_{\max } ,x_{p} , \hfill \\ \bar{x}_{p} ,x_{{p_{\max } }} ,x_{s} \hfill \\ \end{gathered} \) :

Dimensional, non-dimensional input displacement, maximum spool displacement, dimensional, non-dimensional load piston displacements, maximum load piston displacement, and squeeze film damper displacement respectively (m, –, m, m, –, m)

\( \bar{\alpha }_{f} \) :

Non-dimensional parameter for effect of feedback spring on the flapper

\( \bar{\alpha }_{p} \) :

Frequency ratio ω p p

\( \bar{\alpha }_{s} \) :

Non-dimensional differential pressure force parameter across spools

\( \beta ,\bar{\beta } \) :

Dimensional and non-dimensional bulk modulus of fluid respectively (N m−3, –)

\( \bar{\delta }_{f} \) :

Non-dimensional parameter for the effect of feedback spring on the flapper

\( \varepsilon \) :

Eccentricity ratio

\( \bar{\gamma }_{p} \) :

Non-dimensional differential pressure force parameter across the load piston

\( \bar{\gamma }_{s} ,\bar{\lambda }_{s} ,\bar{\lambda }_{f} ,\bar{\lambda }_{p} \) :

Non-dimensional shear force, volumetric change, valve dimension, and leakage flow across load piston parameters respectively

μ:

Fluid viscosity (N s m−2)

θ:

Angular deflection of flapper (rad)

ρ:

Fluid density (kg m−3)

ω a , ω p :

Natural frequencies of the armature and load piston respectively (rad s−1)

ω h :

Hydraulic natural frequency (rad s−1)

\( \bar{\xi } \) :

Non-dimensional modified flow coefficient

ζ p :

Damping coefficient of the piston (N s m−1)

References

  • Akers, A., Lin, S.J.: A Dynamic model of the flapper-nozzle component of an electrohydraulic servovalve. ASME Trans. J. Dyn. Sys. Meas. Control 3, 105–109 (1989)

    Google Scholar 

  • Akers, A., Lin, S.J.: Dynamic analysis of flapper-nozzle valve. ASME Trans. J. Dyn. Sys. Meas. Control 113, 163–167 (1991)

    Article  Google Scholar 

  • Anderson, T.O.: Fluid power systems—modeling and analysis. Institute of Energy Technology, Aalborg University, 2nd ed. (2003)

  • Anderson, R.T., Lipy, : Mathematical modeling of a two spool flow control servovalve using a pressure control pilot. ASME Trans. J. Dyn. Sys. Meas. Control 124, 420–427 (2002)

    Article  Google Scholar 

  • Andres, L.A., Vance, J.M.: Effect of fluid inertia on finite-length squeeze film dampers. ASLE Trans. 30(30), 384–393 (1986)

    Google Scholar 

  • Bang, Y.-B.: Two-stage electrohydraulic servovalve using stack-type piezoelectric elements. Proc. Inst. Mech. Eng. C 218(1), 53–65 (2005)

    Article  Google Scholar 

  • Burrows, C.R., Mu, C., Darling, J.: A Dynamic analysis of a nozzle-flapper valve with integral squeeze film damper. Trans. ASME J. Dyn. Syst. Meas. Control 113, 702–708 (1991)

    Article  Google Scholar 

  • El-Araby, M., El-Kafrawy, Fahmy, A.: Non-dimensional mathematical model of a two stage electrohydraulic servovalve. Port Said Eng. Res. J. Suez Canal Univ. Egypt 10(1), 225–234 (2006a)

    Google Scholar 

  • El-Araby, M., El-Kafrawy, Fahmy, A.: Static characteristics of a two stage electrohydraulic servovalve. Port Said Eng. Res. J. Suez Canal Univ. Egypt 10(2), 158–168 (2006b)

    Google Scholar 

  • Han, Y., Rogersb, R.J.: Nonlinear fluid forces in cylindrical squeeze films. Part II: finite length. J. Fluids Struct. 15, 171–206 (2001)

    Article  Google Scholar 

  • Han, Y., Rogersb, R.J.: Nonlinear fluid forces in cylindrical squeeze films. Part I: short and long lengths. J. Fluids Struct. 15, 151–169 (2002)

    Article  Google Scholar 

  • He, Y.B., Chua, P.S.K., Lim, G.H.: Performance analysis of a two-stage electrohydraulic servovalve in centrifugal force field. J. Fluids Eng. 125, 166–170 (2003)

    Article  Google Scholar 

  • Hiremath, S.S., Singaperumal, M.: Investigations on actuator dynamics through theoretical and finite element approach. Math. Probl. Eng. 2010, 22. Article ID 191898 (2010). doi:10.1155/2010/191898

  • Kuo, B.C., Golnaraghi, F.: Automatic Control Systems, 9th edn. Willey, New York (2010)

    Google Scholar 

  • Liuping, W.: Modern Control Systems Analysis and Design Using Matlab and Simulink. Springr-Verlag, London (2009)

  • Manring, N.D.: Hydraulic Control System. ISBN:978-0-471-69311-6, Willey, New York (2005)

  • Martin, D.J., Burrows, C.R.: The dynamic characteristics of an electrohydraulic Servovalve. ASME Trans. J. Dyn. Syst. Meas. Control 89, 395–406 (1976)

    Article  Google Scholar 

  • Maskery, R.A., Thayer, W.J.: A brief history of electrohydraulic servomechanisms. ASME Trans. J. Dyn. Syst. Meas. Control 100, 110–116 (1978)

    Article  Google Scholar 

  • Math Works: Getting Started with Simulink for DSP, 2nd edn. http://www.mathworks.com (2002)

  • McCloy, D., Martin, H.R.: Some effects of cavitation and flow forces in electrohydraulic servomechanisms. Proc. Inst. Mech. Eng. 178(2), 539 (1963–1964)

  • Ogata, K.: Modern Control Engineering, 4th edn. Pearson Education, Delhi (2002)

    Google Scholar 

  • Tasi, S.T., Akers, A., Lin, S.J.: Modeling and dynamic evaluation of a two-stage two-spool servovalve used for pressure control. ASME Trans. J. Dyn. Syst. Meas. Control 113, 709–713 (1991)

    Article  Google Scholar 

  • Thaler, G.J.: Automatic Control Systems. Jaico Publishing House, Mumbai (2005)

    Google Scholar 

  • Tichy, J.A.: A Study of the effect of fluid inertia and leakage in the finite squeeze film damper. ASME Trans. J. Tribol. 109, 54–59 (1987)

    Article  Google Scholar 

  • Wang, T. et al.: Modeling of a nozzle-flapper type pneumatic servo valve including the influence of flow force. TuTech 33, 33–43 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. El-Kafrawy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Araby, M., El-Kafrawy, A. & Fahmy, A. Dynamic performance of a nonlinear non-dimensional two stage electrohydraulic servovalve model. Int J Mech Mater Des 7, 99–110 (2011). https://doi.org/10.1007/s10999-011-9150-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-011-9150-x

Keywords

Navigation