Skip to main content
Log in

Study on the limit cycle oscillation of the drum brake non-linear vibration model at low frequency

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

A 5-degree non-linear dynamic model is presented to describe the low frequency vibration of drum brake. The centre manifold theory is applied to reduce the system at the Hopf bifurcation point. Through the calculation of normal form of the reduced system at the Hopf bifurcation point, the limit cycle oscillations (LCOs) amplitude is obtained. By this method, the effect of the drum brake parameter on LCO amplitude is studied, the law of the LCOs amplitude varying with systematic parameters is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Chen, Y.S.: Bifurcation and chaos theory of nonlinear vibration systems. Higher Education Press, Beijing (1993)

    Google Scholar 

  • Chen, X.: A study on the judder of drum brakes. Tsing-Hua University, Beijing (1988)

    Google Scholar 

  • Liu, L., Wong, Y.S.: Application of the centre manifold theory in non-linear aeroelasticity. J. Sound Vib. 234, 641–659 (2000)

    Article  MathSciNet  Google Scholar 

  • Liu, J.K., Zhao, L.C.: Bifurcation analysis of airfoils in incompressible flow. J. Sound Vib. 154, 117–124 (1992)

    Article  MATH  Google Scholar 

  • Lu, Q.S.: Constan differential equations stability analysis and bifurcation. Beihang University press, Beijing (1989)

    Google Scholar 

  • Ma, Z.E., Zhou, Y.C.: Constant differential equation determines the stability analysis method. Science Press, Beijing (2001)

    Google Scholar 

  • Sinou, J.J., Thouverez, F., Jezequel, L.: Analysis of friction and instability by the centre manifold theory for a non-linear sprag-slip model. J. Sound Vib. 265, 527–559 (2003)

    Article  Google Scholar 

  • Spurr, R.T.: Brake squeal. Inst. Mech. Eng. 95, 13–15 (1971)

    Google Scholar 

  • The Automobile Faculty of Jilin Industry University: The design of the automobile. The Press of the Mechanical Industry, Beijing (1981)

  • Wang, W.Y.: The automobile designs. Mechanical Industry Press, Beijing (2000)

    Google Scholar 

  • Zhang, Q.C., Liu, H.Y. Ren, H.D.: The study of limit cycle flutter for airfoil with non-linearity. Acta Aerodynamica Sinica 3, 332–336 (2004)

    Google Scholar 

  • Zhou, M.G., Huang Q.B., Wang, Y.: Study on the stability of drum brake non-linear low frequency vibration model. Arch. Appl. Mech. 77(7), 473–483 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minggang Zhou.

Appendices

Appendix A: Parameter values

R = 0.18 m—Radius of shoes

R b  = 0.175 m—radius of base plate

R d  = 0.182 m—Radius of drum

R p  = 0.17 m—Distance between drum center and shoe anle

M b  = 40 kg—Equivalent mass of base plate

M s  = 3 kg—Mass of shoe

M 1 = 4 kg—-Equivalent mass of M 1

M 2 = 4 kg—Equivalent mass of M 2

α = 0.0873 rad—Angle between the axis of symmetry and OO 1

β = 0.8727 rad—Angle between the axis of symmetry and terminate of shoe

α1 = 0.1396 rad—-As shown in Fig. 2.

α2 = 1.4835 rad—As shown in Fig. 2.

K 11 = 2e7 N/m, coefficient of linear term of stiffness K 1

K 12 = 5e6 N/m2—Coefficient of quadratic term of stiffness K 1

K 13 = 5e6 N/m3—Coefficient of cubic term of stiffness K 1

K 21 = 2e7 N/m—Coefficient of linear term of stiffness K 2

K 22 = 5e6 N/m2—Coefficient of quadratic term of stiffness K 2

K 23 = 5e6 N/m3—Coefficient of cubic term of stiffness K 2

K m11 = 2e6 N/m—Coefficient of linear term of stiffness K m1

K m12 = 1e6 N/m2—Coefficient of quadratic term of stiffness K m1

K m13 = 1e6 N/m3—Coefficient of cubic term of stiffness K m1

K m21 = 2e6 N/m—Coefficient of linear term of stiffness K m2

K m22 = 1e6 N/m2—Coefficient of quadratic term of stiffness K m2

K m23 = 1e6 N/m3—Coefficient of cubic term of stiffness K m2

K b1 = 1e7 N/m—Coefficient of linear term of stiffness K b

K b2 = 8e6 N/m2—Coefficient of quadratic term of stiffness K b

K b3 = 8e6 N/m3—Coefficient of cubic term of stiffness K b

C 1 = 5 N/m/s—Coefficient of damping of first mode

C 2 = 5 N/m/s—Coefficient of damping of third mode

C m1 = 5 N/m/s—Coefficient of damping of the lining

C m2 = 5 N/m/s—Coefficient of damping of the lining

C b  = 5 N/m/s—Equivalent coefficient of damping of base plate

f = 0.3—Brake friction coefficient

F b  = 400 N—Brake force

Appendix B: Content of B 0,B 1

$$ \begin{aligned} B_0 &=\left[ {{\begin{array}{llllllllll} -2.2607& 4011.5& & & & & & & & \\ -4011.5&-2.2607& & & & & & & & \\ & & -2.4331& 4053.4& & & & & & \\ & & 4053.4& -2.433& & & & & & \\ & & & & -0.02949& 168.84& & & & \\ & & & & 168.84& -0.02949& & & & \\ & & & & & & & 219.68& & \\ & & & & & & -219.68& & & \\ & & & & & & & & -0.07957& 217.91 \\ & & & & & & & & 217.91& -0.07957 \\ \end{array} }} \right]\\ B_1 &=\left[ {{\begin{array}{llllllllll} 0.57630&-60.699&-0.12115&14.7404&0.32704&-1361.3&2.30433&-9.24361&-0.90154&-82.5647 \\ -0.000401&0.04280&-1.07{\rm e}^{-4}&9.859{\rm e}^{-3}&-0.00025&0.9474& -0.00134&-0.34390&0.00066&-0.30015\\ -0.11468&14.0842&-0.59546&62.2751&-0.15256&274.70&0.38667&-1134.41&0.29922&-1143.22\\ -8.857{\rm e}^{-5}&0.007950&0.000445&-0.04711&9.899{\rm e}^{-6}&0.20662&-0.00094&0.78288&5.616{\rm e}^{-5}&0.81024\\ 0.078012&-8.21545&-0.016831&2.04076&0.04421&-184.28&0.31252&-2.0417&-0.12195&-11.983\\ 1.301{\rm e}^{-6}&-1.578{\rm e}^{-4}& 6.130{\rm e}^{-6}&-6.407{\rm e}^{-4}&1.642{\rm e}^{-6}&-0.0031&-3.53{\rm e}^{-6}&0.01172&-3.27{\rm e}^{-6}&0.01179\\ -0.07190&8.54537&-0.28520&29.7682&-0.08321&171.69&0.12218&-549.60&0.17056&-551.80\\ 3.702{\rm e}^{-3}&-0.43693&0.013729&-1.43227&4.149{\rm e}^{-3}&-8.8351&-4.99{\rm e}^ {-3}&26.5479&-8.60{\rm e}^{-3}&26.6249\\ 0.08984&-10.691&0.36073&-37.6558&0.10458&-214.56&-0.15863&694.747&-0.2140&697.658\\ -3.686{\rm e}^{-3}&0.43504&-0.01366&1.42533&-0.00413&8.7972&4.956{\rm e}^{-3}&-26.420&8.559{\rm e}^{-3}s&-26.496\\ \end{array} }} \right]\\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, M., Chen, Y., Wang, Y. et al. Study on the limit cycle oscillation of the drum brake non-linear vibration model at low frequency. Int J Mech Mater Des 4, 317–324 (2008). https://doi.org/10.1007/s10999-008-9075-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-008-9075-1

Keywords

Navigation