Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K. R., & Samek, W. (2015). On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE, 10(7), 1–46.
Google Scholar
Barber, R. F., & Candès, E. J. (2015). Controlling the false discovery rate via knockoffs. Annals of Statistics, 43(5), 2055–2085.
MathSciNet
MATH
Article
Google Scholar
Bates, S., Candès, E., Janson, L., & Wang, W. (2020). Metropolized knockoff sampling. Journal of the American Statistical Association, 1–15.
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (statistical Methodology), 57(1), 289–300.
MathSciNet
MATH
Google Scholar
Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29(4), 1165–1188.
MathSciNet
MATH
Article
Google Scholar
Berrett, T. B., Wang, Y., Barber, R. F., & Samworth, R. J. (2020). The conditional permutation test for independence while controlling for confounders. Journal of the Royal Statistical Society: Series B (statistical Methodology), 82(1), 175–197. https://doi.org/10.1111/rssb.12340
MathSciNet
Article
MATH
Google Scholar
Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E., et al. (2016). mlr: Machine learning in R. Journal of Machine Learning Research, 17(170), 1–5.
MathSciNet
MATH
Google Scholar
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 1–33.
MATH
Article
Google Scholar
Candès, E., Fan, Y., Janson, L., & Lv, J. (2018). Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society: Series B (statistical Methodology), 80(3), 551–577.
MathSciNet
MATH
Article
Google Scholar
Doran, G., Muandet, K., Zhang, K., & Schölkopf, B. (2014). A permutation-based kernel conditional independence test. In Proceedings of the International Conference on Uncertainty in Artificial Intelligence (pp. 132–141).
Dua, D., & Graff, C. (2017). UCI machine learning repository. University of California, School of Information and Computer Science.
Google Scholar
Feng, J., Williamson, B., Simon, N., & Carone, M. (2018). Nonparametric variable importance using an augmented neural network with multi-task learning. In Proceedings of the International Conference on Machine Learning (pp. 1496–1505).
Fisher, R. A. (1935). The design of experiments. Oliver & Boyd.
Google Scholar
Fisher, A., Rudin, C., & Dominici, F. (2019). All models are wrong, but many are useful: Learning a variable’s importance by studying an entire class of prediction models simultaneously. Journal of Machine Learning Research, 20(177), 1–81.
MathSciNet
MATH
Google Scholar
Fleuret, F. (2004). Fast binary feature selection with conditional mutual information. Journal of Machine Learning Research, 5, 1531–1555.
MathSciNet
MATH
Google Scholar
Friedman, J. H., & Popescu, B. E. (2008). Predictive learning via rule ensembles. The Annals of Applied Statistics, 2(3), 916–954.
MathSciNet
MATH
Article
Google Scholar
Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1–41.
Article
Google Scholar
Fukumizu, K., Gretton, A., Sun, X., & Schölkopf, B. (2008). Kernel measures of conditional dependence. Advances in Neural Information Processing Systems, 20, 489–496.
Google Scholar
Gevrey, M., Dimopoulos, I., & Lek, S. (2003). Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecological Modelling, 160(3), 249–264.
Article
Google Scholar
Gregorutti, B., Michel, B., & Saint-Pierre, P. (2015). Grouped variable importance with random forests and application to multiple functional data analysis. Computational Statistics & Data Analysis, 90, 15–35.
MathSciNet
MATH
Article
Google Scholar
Grömping, U. (2007). Estimators of relative importance in linear regression based on variance decomposition. The American Statistician, 61(2), 139–147.
MathSciNet
Article
Google Scholar
Guedj, B. (2019). A primer on PAC-Bayesian learning. arXiv preprint, 1901.05353.
Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3(7/8), 1157–1182.
MATH
Google Scholar
Hansen, D., Manzo, B., & Regier, J. (2021). Normalizing flows for knockoff-free controlled feature selection. arXiv preprint, 2106.01528.
Harrison, D., & Rubinfeld, D. L. (1978). Hedonic housing prices and the demand for clean air. Journal of Environmental Economics and Management, 5(1), 81–102.
MATH
Article
Google Scholar
Herschkowitz, J. I., Simin, K., Weigman, V. J., Mikaelian, I., Usary, J., Hu, Z., et al. (2007). Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biology, 8(5), R76.
Article
Google Scholar
Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6(2), 65–70.
MathSciNet
MATH
Google Scholar
Hubbard, A. E., Kennedy, C. J., & van der Laan, M. J. (2018). Data-adaptive target parameters. In M. J. van der Laan & S. Rose (Eds.), Targeted learning in data science (pp. 125–142). Springer.
Google Scholar
Kalisch, M., Mächler, M., Colombo, D., Maathuis, M. H., & Bühlmann, P. (2012). Causal inference using graphical models with the R package pcalg. Journal of Statistical Software, 47(11), 1–26.
Article
Google Scholar
Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles and techniques. MIT Press.
MATH
Google Scholar
Korb, K. B., & Nicholson, A. E. (2009). Bayesian artificial Intelligence (2nd ed.). Chapman and Hall/CRC.
MATH
Google Scholar
Kruschke J. K. (2013). Bayesian estimation supersedes the t test. Journal of Experimental Psychology: General, 142(2), 573–603. https://doi.org/10.1037/a0029146
Article
Google Scholar
Kuhn, M., & Johnson, K. (2019). Feature engineering and selection: A practical approach for predictive models. Chapman and Hall/CRC.
Book
Google Scholar
Kursa, M. B., & Rudnicki, W. R. (2010). Feature selection with the Boruta package. Journal of Statistical Software, 36(11), 1–13.
Article
Google Scholar
Lei, J., G’Sell, M., Rinaldo, A., Tibshirani, R. J., & Wasserman, L. (2018). Distribution-free predictive inference for regression. Journal of the American Statistical Association, 113(523), 1094–1111.
MathSciNet
MATH
Article
Google Scholar
Lim, E., Vaillant, F., Wu, D., Forrest, N. C., Pal, B., Hart, A. H., et al. (2009). Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nature Medicine, 15, 907.
Article
Google Scholar
Lindeman, R. H., Merenda, P. F., & Gold, R. Z. (1980). Introduction to bivariate and multivariate analysis. Longman.
MATH
Google Scholar
Lundberg, S. M., & Lee, S. -I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30, 4765–4774.
Google Scholar
Maathuis, M. H., Kalisch, M., & Bühlmann, P. (2009). Estimating high-dimensional intervention effects from observational data. Annals of Statistics, 37(6A), 3133–3164.
MathSciNet
MATH
Article
Google Scholar
Martínez Sotoca, J., & Pla, F. (2010). Supervised feature selection by clustering using conditional mutual information-based distances. Pattern Recognition, 43(6), 2068–2081.
MATH
Article
Google Scholar
Meinshausen, N., & Bühlmann, P. (2010). Stability selection. Journal of the Royal Statistical Society: Series B (statistical Methodology), 72(4), 417–473.
MathSciNet
MATH
Article
Google Scholar
Mentch, L., & Hooker, G. (2016). Quantifying uncertainty in random forests via confidence intervals and hypothesis tests. Journal of Machine Learning Research, 17(1), 841–881.
MathSciNet
MATH
Google Scholar
Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2018). e1071: Misc functions of the department of statistics, probability theory group. CRAN. R package version 1.7–0.
Nicodemus, K. K., Malley, J. D., Strobl, C., & Ziegler, A. (2010). The behaviour of random forest permutation-based variable importance measures under predictor correlation. BMC Bioinformatics, 11(1), 110.
Article
Google Scholar
Patterson, E., & Sesia, M. (2018). knockoff. CRAN. R package version 0.3.2.
Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann.
MATH
Google Scholar
Phipson, B., & Smyth, G. (2010). Permutation P-values should never be zero: Calculating exact P-values when permutations are randomly drawn. Statistical Applications in Genetics and Molecular Biology, 9(1).
Ramsey, J. D. (2014). A scalable conditional independence test for nonlinear, non-Gaussian data. arXiv preprint, arXiv:1401.5031
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should I trust you?”: Explaining the predictions of any classifier. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1135–1144).
Rinaldo, A., Wasserman, L., & G’Sell, M. (2019). Bootstrapping and sample splitting for high-dimensional, assumption-lean inference. Annals of Statistics, 47(6), 3438–3469.
MathSciNet
MATH
Article
Google Scholar
Romano, Y., Sesia, M., Candès, E. (2020). Deep Knockoffs. Journal of the American Statistical Association, 115(532) 1861–1872. https://doi.org/10.1080/01621459.2019.1660174
MathSciNet
Article
MATH
Google Scholar
Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2), 225–237. https://doi.org/10.3758/PBR.16.2.225
Article
Google Scholar
Sauer, N. (1972). On the density of families of sets. Journal of Combinatorial Theory Series A, 13(1), 145–147.
MathSciNet
MATH
Article
Google Scholar
Scutari, M. (2010). Learning Bayesian networks with the bnlearnR package. Journal of Statistical Software, 35(3), 1–22.
Article
Google Scholar
Scutari, M., & Denis, J.-B. (2014). Bayesian networks: With examples in R. Chapman and Hall/CRC.
MATH
Book
Google Scholar
Sesia, M., Sabatti, C., & Candès, E. J. (2019). Gene hunting with hidden Markov model knockoffs. Biometrika, 106(1), 1–18.
MathSciNet
MATH
Article
Google Scholar
Shah, R., & Peters, J. (2020). The hardness of conditional independence testing and the generalised covariance measure. Annals of Statistics, 48(3), 1514–1538.
MathSciNet
MATH
Article
Google Scholar
Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge University Press.
MATH
Book
Google Scholar
Shelah, S. (1972). A combinatorial problem: Stability and orders for models and theories in infinitariy languages. Pacific Journal of Mathematics, 41(1), 247–261.
MathSciNet
MATH
Article
Google Scholar
Shrikumar, A., Greenside, P., & Kundaje, A. (2017). Learning important features through propagating activation differences. In Proceedings of the International Conference on Machine Learning (Vol. 70, pp. 3145–3153).
Sørlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J. S., Nobel, A., et al. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proceedings of the National Academy of Sciences, 100(14), 8418–8423.
Article
Google Scholar
Spirtes, P., Glymour, C. N., & Scheines, R. (2000). Causation, prediction, and search (2nd ed.). The MIT Press.
MATH
Google Scholar
Steinke, T., & Zakynthinou, L. (2020). Reasoning about generalization via conditional mutual information. In Proceedings of the International Conference on Learning Theory (pp. 3437–3452).
Storey, J. D. (2002). A direct approach to false discovery rates. Journal of the Royal Statistical Society: Series B (statistical Methodology), 64(3), 479–498.
MathSciNet
MATH
Article
Google Scholar
Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., & Zeileis, A. (2008). Conditional variable importance for random forests. BMC Bioinformatics, 9(1), 307.
Article
Google Scholar
Strobl, E. V., Zhang, K., & Visweswaran, S. (2018). Approximate kernel-based conditional independence tests for fast non-parametric causal discovery. Journal of Causal Inference, 7(1), 20180017.
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., & Gillette, M. A. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102(43), 15545–15550.
Article
Google Scholar
Tansey, W., Veitch, V., Zhang, H., Rabadan, R., & Blei, D.M. (2021). The holdout randomization test for feature selection in black box models. Journal of Computational and Graphical Statistics, 1–37.
Team, R. C. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society B, 58(1), 267–288.
MathSciNet
MATH
Google Scholar
Turner, N. C., & Reis-Filho, J. S. (2006). Basal-like breast cancer and the BRCA1 phenotype. Oncogene, 25, 5846.
Article
Google Scholar
van der Laan, M. J. (2006). Statistical inference for variable importance. The International Journal of Biostatistics, 2(1).
van der Laan, M. J., & Rose, S. (Eds.). (2018). Targeted learning in data science: Causal inference for complex longitudinal studies. Springer.
MATH
Google Scholar
Vapnik, V., & Chervonenkis, A. (1971). On the uniform convergence of relative frequencies to their probabilities. Theory of Probabability & Its Applications, 16(2), 264–280.
MATH
Article
Google Scholar
Vejmelka, M., & Paluš, M. (2008). Inferring the directionality of coupling with conditional mutual information. Physical Review E, 77(2), 26214.
MathSciNet
Article
Google Scholar
Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). Springer.
MATH
Book
Google Scholar
Verma, T., & Pearl, J. (1991). Equivalence and synthesis of causal models. In Proceedings of the International Conference on Uncertainty in Artificial Intelligence (pp. 255–270).
Wachter, S., Mittelstadt, B., & Russell, C. (2018). Counterfactual explanations without opening the black box: Automated decisions and the GDPR. Harvard Journal of Law & Technology, 31(2), 841–887.
Google Scholar
Wetzels, R., Raaijmakers, J. G. W., Jakab, E., Wagenmakers, E.-J. (2009). How to quantify support for and against the null hypothesis: A flexible WinBUGS implementation of a default Bayesian t test. Psychonomic Bulletin & Review, 16(4), 752–760. https://doi.org/10.3758/PBR.16.4.752
Article
Google Scholar
Williamson, B. D., Gilbert, P. B., Carone, M., & Simon, N. (2021). Nonparametric variable importance assessment using machine learning techniques. Biometrics, 77(1), 9–22. https://doi.org/10.1111/biom.13392
MathSciNet
Article
Google Scholar
Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.
Article
Google Scholar
Wright, M. N., & Ziegler, A. (2017). ranger: A fast implementation of random forests for high dimensional data in C++ and R. Journal of Statistical Software, 77(1).
Wu, D., & Smyth, G. K. (2012). Camera: A competitive gene set test accounting for inter-gene correlation. Nucleic Acids Research, 40(17), e133.
Article
Google Scholar
Zhang, K., Peters, J., Janzing, D., & Schölkopf, B. (2011). Kernel-based conditional independence test and application in causal discovery. In Proceedings of the International Conference on Uncertainty in Artificial Intelligence (pp. 804–813).